3GPP TSG SA WG3 (Security) Meeting #80
S3-151846
24-28 August 2015 Tallinn, Estonia

Source:
Alcatel-Lucent, Motorola Solutions, Inc
Title:
MCPTT User authentication and registration based on OpenID Connect
Document for:
Discussion and Approval
Agenda Item:
MCPTT
Work Item / Release:
MCPTT/Rel-13
Abstract of the contribution: This contribution describes the procedure for Single sign-on based MCPTT user authentication and registration to MCPTT Service using the OpenID Connect protocol.
1. Introduction
The objective of this paper is to present a single sign-on authentication and registration solution based on the OpenID Connect 1.0 protocol.

The first part of the paper (Section 2) is an introduction to the proposed SA6 architecture, including the distributed functional plane based architecture and various layer-specific user identities. In the second part of the paper (Section 3), we present a solution for MCPTT User authentication and registration based on the OpenID Connect protocol.
2. MCPTT Architecture
2.1 Functional plane
The functional model for the support of MCPTT is defined as a series of independent planes to allow for the breakdown of the architectural description.

1. Application plane: Provides all the MCPTT services required by the user. Uses the services of the signalling control plane and the media plane. Includes the following functional entities:

· MCPTT application service consisting of the MCPTT client on the UE and MCPTT server in the MCPTT system

· Common services core consisting of Identity Management client/server, Group Management Client/Server and Configuration management client/server

2. Signalling control plane: Includes the following functional entities

· Signalling user agent (SIP user agent) for all SIP transactions

· Local inbound/outbound proxy (similar to P-CSCF) – supports Gm reference point with the UE SIP User Agent Client

· Registrar finder (similar to I-CSCF)

· Registrar (similar to S-CSCF) – performs Application service selection; authentication of identities provided within SIP signaling; Supports 3GPP ISC interface to the MCPTT server

· Hypertext client, Hypertext server – acts as HTTP client and server respectively for all hypertext transactions. Based on 3GPP Ut reference point

3. Media plane: Conferencing of media, floor control

4. Bearer plane: Bearers provided by LTE. Unicast and multicast.

Each layer manages its own security. Further, each layer is responsible for the privacy of that plane’s own identities.
2.2 On-network architectural model diagram

Below is the on-network architectural model for MCPTT system.

a) Application services layer – includes the MCPTT application, floor control server and supported functions grouped into common services core. Common services core is composed of the following functional entities:

· For common services, a configuration management server, a identity management server and a group management server

· For signaling control, a hypertext server

b) SIP Core – provides contact address binding and URI resolution and service control functions such as application service selection). It is composed of the P-CSCF, I-CSCF and S-CSCF

c) EPS – provides bearer services with QoS

[image: image1.png]
Figure 1 : On-network Architectural Model

2.3 MCPTT Signaling Plane
There are two transport paths available for MCPTT application level signaling between the UE and the MCPTT system:

a) Embedded in SIP messages and sent through the SIP Core : This is primarily used for exchange of messages between the MCPTT client and MCPTT server

b) Embedded in HTTP messages and sent over the internet: This is primarily used for exchange of messages by the Common services functions like Identity Management client/server.

2.3.1 HTTP message based signaling

HTTP messages carrying MCPTT application payload, are exchanged between the Hypertext client on the UE and Hypertext server in the MCPTT system. In the Application plane, common services such as Identity Management client/server and Group Management client/server, use HTTP signaling plane to exchange messages.

2.3.2 SIP message based signaling
The following figure captures SIP core based signaling plane between the MCPTT Client and MCPTT Server:

[image: image2.emf]SIP core

MCPTT client

Http client

SIP User

Agentclient

Signalling Plane

MCPTT

server

MCPTT-1

SIP-1

UE

SIP-2

Figure 2: Signalling plane between MCPTT client and MCPTT server

MCPTT application-level signaling between the MCPTT Client and the MCPTT server is based on SIP messaging. SIP Core infrastructure is used to transport SIP messages carrying the MCPTT application payload. These messages are transported between the UE and the MCPTT system in two hops:

i. The MCPTT client uses SIP UAC on the UE to communicate with the SIP Core over the SIP-1 reference point. SIP-1 is based on the 3GPP Gm reference point (TS 23.002, clause 6a.7.2).
ii. In the SIP Core, the Registrar or S-CSCF determines MCPTT server’s SIP-URI and forwards the SIP message carrying MCPTT payload to the MCPTT Server over the SIP-2 reference point. SIP-2 is based on the 3GPP ISC reference point (TS 23.002, clause 6a.7.8a).

2.4 MCPTT Authentication

The MCPTT user authentication process in MCPTT involves two independent authentication steps – one in the Application layer and the other in the SIP control plane layer.

2.4.1 Application layer authentication

In the application plane, MCPTT User Id is used to authenticate the MCPTT user by the Identity management server in the MCPTT system.

2.4.2 SIP Control plane layer authentication

In the SIP Control plane, Private User Id is used to authenticate the SIP User agent in the UE, prior to registering the MCPTT user in SIP Core. The MCPTT user is identified by the user’s Public User Id. Depending on the ownership of the Registrar (S-CSCF), authentication functions are supported by access either to the public network's own subscriber database (when PLMN owns S-CSCF) or the MCPTT service provider's MCPTT user database (when S-CSCF is administered by the MCPTT Service provider).
3. MCPTT User authentication and registration based on OpenID Connect
3.1 IMS based SIP Core

In the proposed solution, the SIP Core is based on the 3GPP IMS architecture.
As depicted in the figure below, MCPTT Client and MCPTT Server communicate using SIP messages transported over the IMS network. IMS provides session management, transport and routing of SIP messages between the MCPTT Client and the Server. MCPTT application information is carried in the SIP message body.

Common services such as Group Management or Identity Management use HTTP based interface between the client and the server.

 SHAPE * MERGEFORMAT

Figure 3: IMS based MCPTT Security architecture

3.2 Introduction to OpenID Connect 1.0
The OpenID Connect (OIDC) protocol is used to authenticate the MCPTT user during registration. It is based on the OAuth 2.0 family of specifications and implements authentication as an extension to the OAuth 2.0 authorization process.

3.2.1 OpenID Connect Tokens
The OpenID Connect based authorization server provides client applications with two key tokens:
a) ID token
· Asserts the users identity in a signed and verifiable way

· Similar to an identity card, identifying the authenticated user
· JSON Web Token (JWT) based self-contained token

b) Access token

· Provides access to the user’s details at the UserInfo endpoint on the authorization server

· This is like a physical token or a ticket or a voucher
3.2.2 OpenID Identity Provider (IDP) and Relying Party (RP)

An OAuth 2.0 Authorization server supporting OpenID Connect protocol and providing user authentication as a service is referred to as the OpenID Identity Provider (IDP). An application that outsources its user authentication function to an IDP is referred to as a Relying Party (RP).
In our proposal, the Identity Management Server in the MCPTT network is the OpenID Identity Provider, and the MCPTT Server which depends on the IDP to authenticate the user and issue an access token, is the Relying Party.
3.2.3 OpenID Connect based authentication

In general the OpenID Connect protocol works as follows:

a) The Relying Party (RP) forwards the client to the OpenID Provider (OP).
b) The OP authenticates the End-User and obtains authorization.
c) The OP issues ID Token (aka claim) and an Access Token and forwards them to the RP through the redirect URI.
· ID Token contains information about the authenticated End-User.

· Access token provides assurance to the RP that the user is successfully authenticated.
d) The RP can request additional information about the user by sending the Access Token to the UserInfo Endpoint.
e) The UserInfo Endpoint returns additional Claims about the authenticated End-User.
3.2.4 OpenId Connect Authorization Code flow using Proof Key for Code Exchange
In the proposed solution, OpenID Connect Authorization code flow with additional security enhancements proposed by “Proof Key for Code Exchange” (draft-ietf-oauth-spop-15) is used for authenticating the user.
The MCPTT Client native application in the UE is a “public client” incapable of maintaining the confidentiality of their credentials. When a public client utilizes the Authorization Code Grant to authenticate with the OIDC server, they are susceptible to the authorization code interception attack.

Once the user (i.e. the resource owner) authenticates, the OIDC server provides MCPTT Client with an authorization code through a browser redirect HTTP message. The client then sends the authorization code to the OIDC Server and gets an access token in return. The Redirection URI typically uses a custom URI to communicate with the native application.

The interface between the browser and the native app is based on callbacks (handlers). This path is unprotected and could be attacked by a malicious application (native application) in the UE. A malicious app can register itself as handler for the custom URI scheme and intercept the authorization code. To prevent these kinds of malicious apps from exchanging the “falsely obtained” code for an access token, code-challenge and code-verifier strings are used by the IdM Server to verify the the MCPTT Client.

a) The Client creates a code_verifier string and a code_challenge string derived from the code-verifier string.

b) The client includes the code_challenge string when it requests an access token in the “Authorization Request” message.

c) Subsequently, when it sends a message to exchange the authorization code for an access token, it includes the code_verifier string to the IdM Server, in addition to the authorization code. The code_verifier string is cryptographically associated with the code_challenge. Therefore the IdM Server can generate code_challenge on its own from the received code-verifier string, and compare it with the code_challenge provided by the client in the “Authorization Request”. If the values match, it proves that the client is legal. An an access token is granted to the client.
3.2.5. MCPTT user authentication and registration based OpenID Connect

The MCPTT application layer authentication is done in two steps:

· MCPTT Client is authenticated based the user’s MCPTT User Id. The access token and ID Token is obtained by the MCPTT Client.
· The access token is included in SIP REGISTER and forwarded to the MCPTT Server. The server then exchanges the token for corresponding Client information based on OpenID Connect’s User info endpoint. OpenID Connect based Identity Management Server validates the access token and returns the associated MCPTT Client Id (along with other info, as needed) in the User Info Response.

SIP Control plane layer authentication may be based on the existing IMS Authenticaton scheme in 3GPP TS 33.203 including token based authentication scheme similar to what is used in IMS_WebRTC registration scenarios cf Annex X.3.
The following figure shows the high level flow for MCPTT UE registration with SIP Core with Token-based MCPTT user authentication and registration for MCPTT.

[image: image4.emf]MCPTT

Server

SIP Core

MCPTT

Client

SIP User

Agent

ID Management

Server

0. UE authenticates and obtains an IP address (33.401)

MCPTT

UE

1. SIP User agent registers with SIP Core using secure tunnel

EPS Core

2. 3

rd

Party registration

3. MCPTT Client performs user authentication and obtains an access token

4. MCPTT Client performs user registration with the MCPTT Server

5. MCPTT User Profile downloaded to the UE using PUBLISH

Figure 4: MCPTT UE Registration and Token-based User Authentication Flow
Step 0:
The UE attaches to the network, establishes normal connectivity, and sets up network security as defined in 33.401.

Step 1: The MCPTT UE establishes a secure session with the SIP Core. The SIP User Agent authenticates to the SIP core and registers its IMPU. Any of the existing 3GPP IMS Authentication schemes may be used to authenticate and register the IMPU with the SIP Core.

NOTE: At this time, only a secure connection exists between the MCPTT UE and the SIP Core, no MCPTT communications (emergency or otherwise) are available.

Step 2: The SIP core sends a SIP 3rd Party Registration to the MCPTT application Server, notifying it of the MCPTT UE SIP registration. The registered IMPU is sent in this step along with the SIP Core address. This allows MCPTT server to allow minimal or default services for this SIP session at this time.

Step 3: The user provides its MCPTT User Identity and associated credentials to the IdM server via the IdM client’s user agent (over https). If the user is successfully authenticated (and optionally authorized) by the IdM Server, the MCPTT client receives in return an access token specific to the MCPTT user and MCPTT service.

NOTE: This step may occur at any point in this flow between Step 0 and Step 4.

Step 4: The access token obtained in Step 3 is provided to the MCPTT server in a SIP Publish message. The MCPTT application validates the access token. If the MCPTT user is authorized for MCPTT services, then the MCPTT server binds the user associated with the access token with the SIP session URI and IMPU.

Step 5: The MCPTT server responds by providing the MCPTT user its service authorization profile.
The actual sequence of steps involved is detailed in the following section.

3.3 MCPTT User authentication and registration using OpenID Connect

An example flow detailing the use of OpenID Connect in MCPTT User registration is presented below:

Pre-requisite:
1. The UE has authenticated with the EPC and obtained an IP address. It has also discovered the local P-CSCF in the Home IMS network.

[image: image5.emf]MCPTT

Client

MCPTT

Server

P-CSCF

Request Access

Token

S-CSCF

MCPTT

User

3. HTTPS GET (Authentication request)

https://IdM.server.com/

authorize?response_type=code&client_id=mcptt_client&code_challenge=3diyewou&nonce=nMqsIj&state=af0ifjsldkj&scope=openid profile

IMS

Client

ID Mgmt

Server

MCPTT UE

Home IMS

network

Primary MCPTT

System

PLMN

LTE

Access

1. UE authenticates and obtains

an IP address

ID Mgmt

Client

5. Obtain user consent (optional/conditional)

Initiate

Authentication

procedure

9. Response

Access token,

ID Token

4. User AuthenticatesUser provides credentials

6. Authorization Response

https://IdM.server.com/cb?code=SplxlOBeZQQYbYS6WxSbIA&state=af0ifjsldkj&

7. POST token

Host: IdM.server.com

grant_type=authorization_code&code=&client_id=myNativeApp&code_verifier=0x123456789abcdef

8. 200 OK

{ "access_token": "SlAV32hkKG", "token_type": "Bearer", "refresh_token": "8xLOxBtZp8", "expires_in": 3600, "id_token": "ey...vKMzqg"}

2. IMS client authenticates with the Home IMS3

rd

party Reg

10a. Publish

(To:<MCPTT Server PSI>, From:<IMPU>, Event: Token

encrypted (XML body with Access Token))

Publish

(To:<MCPTT Server PSI>,

From:<IMPU>, P-

Asserted_Identity=<IMPU>,

encrypted (XML body with

Access Token))

Server decrypts XML

body, verifies token,

extracts MCPTT user id,

maps MCPTT user id to

IMPU

200 OK

(To:<IMPU>, From:<MCPTT

Server PSI>)

10b. 200 OK

(To:<IMPU>, From:<MCPTT Server PSI>)

11a. Subscribe

(To:<MCPTT Server PSI>, From:<IMPU>, Event: MCPTT Service state)

Subscribe

(To:<MCPTT Server PSI>,

From:<IMPU>, P-

Asserted_Identity=<IMPU>))

200 OK

(To:<IMPU>, From:<MCPTT

Server PSI>)

11b. 200 OK

(To:<IMPU>, From:<MCPTT Server PSI>)

12a. Notify

(To:<IMPU>, From:<MCPTT Server PSI>,Event: MCPTT Service state

encrypted (MCPTT User Profile, permissions))

Notify

(To:<IMPU>, From:<MCPTT

Server PSI>,Event: MCPTT Svc

state, encrypted (User profile,

permissions))

Server determines User

Profile and permissions

for the MCPTT User and

encrypts it in XML body

200 OK

(To:<MCPTT Server PSI>,

From:<IMPU>, P-

Asserted_Identity=<IMPU>)

12b. 200 OK

(To:<MCPTT Server PSI>, From:<IMPU>)

Internal Messaging Publish

(Access Token)

Internal Messaging OK

Internal Messaging Subscribe

(MCPTT service state)

Internal Messaging OK

Internal Messaging OK

Internal Messaging Notify (MCPTT

User profile, permissions)

Initiate

Registration

procedure

Figure 4: MCPTT User authentication and registration using OpenID Connect

Step 2: The UE IMS Client authenticates with the Home IMS network, performs SIP registration with the SIP Core. The SIP core sends a SIP 3rd Party Registration to the MCPTT application Server, notifying it of the MCPTT UE SIP registration. The 3rd party REGISTER message includes the registered IMPU and S-CSCF’s SIP-URI or IP Address.

NOTE: This step uses one of the existing 3GPP IMS Authentication mechanisms defined in 3GPP TS 33.203 to authenticate the UE and register the IMPU in IMS. This includes the token-based authentication scheme similar to what is followed during IMS WebRTC registration of the WebRTC IMS Client.

Step 3: The MCPTT Client initiates the MCPTT User Authentication procedure, requesting an access token from the Identity Management Server using OpenID Connect protocol.

The IdMC in the UE issues a HTTPS Authentication request to the OIDC based Identity Management Server (IdMS) in the MCPTT network. The client includes the code_challenge value as part of this request.
Step 4: The user provides the MCPTT User Identity and associated credentials to the IdM server. The user is successfully authenticated (and optionally authorized) by the IdM Server.

Step 5: The IdMS may optionally request user consent for granting the MCPTT client access to MCPTT services in the MCPTT Server.

Step 6: The IdM Server generates an authorization code that is associated with the code_challenge provided by the client. It sends a browser redirect HTTP message with the Authorization Response containing the authorization code.

Step 7: The UE IdM Client performs a HTTP POST request to exchange the authorization code for an access token. In the request, the client includes the code_verifier string.This string is cryptographically associated with the code_challenge value provided by the client in step 3.
Step 8: The IdM Server verifies the IdM Client based on the received code-verifier string and issues a 200 OK with an access token and ID token (specific to the MCPTT user and MCPTT service) included in it.

NOTE: The server verifies by calculating the code challenge from received code_verifier and comparing it with the code_challenge provided by the client in step 3.
Step 9: The access token and ID token are provided to the MCPTT client.

Step 10a: The MCPTT client registers with the MCPTT application server using the SIP Publish message containing the access token. The message body is encrypted to ensure that intermediate nodes, including those in the IMS transport network, do not see the access token.

Step 10b: The MCPTT server validates the received access token and registers the user. It acknowledges to the MCPTT Client with a 200 OK.

The MCPTT server maintains the association between the MCPTT User Identity, the IMPU and the S-CSCF’s contact address in the IMS network.

NOTE: The procedure followed to validate the access token is out of scope of this section.

Step 11a & 11b: The MCPTT client subscribes to the MCPTT service state in the MCPTT server with a SIP SUBSCRIBE message. The MCPTT application server acknowledges the transaction.

Step 12a & 12b: The MCPTT application server determines the User Profile/Permissions based on the authenticated MCPTT User Id and provides them to the MCPTT client in a SIP Notify message. The MCPTT client acknowledges the transaction.

4. Conclusion

We kindly ask SA3 to accept the above solution for MCPTT User authentication and registration presented in the accompanying pCR S3-151742.
[image: image6.png]

IMS Network

MCPTT Client

MCPTT User ID

SIP with SDP over TLS

SIP with SDP over NDS/IP

HTTPS client

HTTPS client

IMS client

ID Mgmt Client

GM Client

HTTPS Server

HTTPS Server

IMS client

MCPTT Server

GM Server

ID Mgmt Server

Internet

Message

Message

Request-URI: MCPTT AS’s SIP URI; From: S-CSCF’s SIP URI; To: IMPU Contact: S-CSCF’s SIP URI; Message body (App signaling msg)

M

Request-URI: Home Registrar’sdomain From: IMPU; To: IMPU; Authorization: Digest username=IMPI; Contact: MCPTT Client’s IP Address; Message body (App signaling msg)

M

_1501270971.vsd
MCPTT
Server

MCPTT UE

1. SIP User agent registers with SIP Core using secure tunnel

EPS Core

2. 3rd Party registration

3. MCPTT Client performs user authentication and obtains an access token

4. MCPTT Client performs user registration with the MCPTT Server

5. MCPTT User Profile downloaded to the UE using PUBLISH

SIP Core

MCPTT Client

_1501310369.vsd
MCPTT Client

MCPTT
Server

 9. Response

Access token,
ID Token

P-CSCF

 Initiate Registration procedure

S-CSCF

�

Request Access Token

MCPTT UE

MCPTT User

Home IMS network

Primary MCPTT System

3. HTTPS GET (Authentication request)
https://IdM.server.com/authorize?response_type=code&client_id=mcptt_client&code_challenge=3diyewou&nonce=nMqsIj&state=af0ifjsldkj&scope=openid profile

�

ID Mgmt Client

IMS Client

5. Obtain user consent (optional/conditional)

ID Mgmt
Server

Initiate Authentication procedure

PLMN

LTE
Access

1. UE authenticates and obtains an IP address

4. User Authenticates

User provides credentials

6. Authorization Response
https://IdM.server.com/cb?code=SplxlOBeZQQYbYS6WxSbIA&state=af0ifjsldkj&

7. POST token
Host: IdM.server.com
grant_type=authorization_code&code=&client_id=myNativeApp&code_verifier=0x123456789abcdef

8. 200 OK
 { "access_token": "SlAV32hkKG", "token_type": "Bearer", "refresh_token": "8xLOxBtZp8", "expires_in": 3600, "id_token": "ey...vKMzqg"}

2. IMS client authenticates with the Home IMS

3rd party Reg

10a. Publish
(To:<MCPTT Server PSI>, From:<IMPU>, Event: Token
encrypted (XML body with Access Token))

Publish
(To:<MCPTT Server PSI>, From:<IMPU>, P-Asserted_Identity=<IMPU>, encrypted (XML body with Access Token))

Server decrypts XML body, verifies token, extracts MCPTT user id, maps MCPTT user id to IMPU

200 OK
(To:<IMPU>, From:<MCPTT Server PSI>)

10b. 200 OK
(To:<IMPU>, From:<MCPTT Server PSI>)

11a. Subscribe
(To:<MCPTT Server PSI>, From:<IMPU>, Event: MCPTT Service state)

Subscribe
(To:<MCPTT Server PSI>, From:<IMPU>, P-Asserted_Identity=<IMPU>))

200 OK
(To:<IMPU>, From:<MCPTT Server PSI>)

11b. 200 OK
(To:<IMPU>, From:<MCPTT Server PSI>)

12a. Notify
(To:<IMPU>, From:<MCPTT Server PSI>,Event: MCPTT Service state
 encrypted (MCPTT User Profile, permissions))

Notify
(To:<IMPU>, From:<MCPTT Server PSI>,Event: MCPTT Svc state, encrypted (User profile, permissions))

Server determines User Profile and permissions for the MCPTT User and encrypts it in XML body

200 OK
(To:<MCPTT Server PSI>, From:<IMPU>, P-Asserted_Identity=<IMPU>)

12b. 200 OK
(To:<MCPTT Server PSI>, From:<IMPU>)

Internal Messaging Publish
(Access Token)

Internal Messaging OK

Internal Messaging Subscribe
(MCPTT service state)

Internal Messaging OK

Internal Messaging OK

Internal Messaging Notify (MCPTT User profile, permissions)

_1499172215.vsd
SIP core

MCPTT server

Signalling Plane

MCPTT client

Http client

SIP User Agent client

UE

MCPTT-1

SIP-1

SIP-2

