3GPP TSG SA WG3 (Security) Meeting #79
S3-151390
13-17 April 2015, Nanjing, P.R. China

Source:
Qualcomm
Title:
Solution for structured Restricted Discovery ProSe Codes
Document for:
Approval
Agenda Item:
8.5
Work Item / Release:
FS_ProSe_Sec
Abstract of the contribution: This contribution proposes a solution for Restricted Direct Discovery ProSe Codes that have structure requiring to be preserved for matching purposes.
1 Discussion
Restricted Discovery ProSe Codes that contain structure have been introduced in TR 23.713 713 under the feature called “Restricted Discovery with Application-controlled extension”. Such codes contain a ProSe-Function assigned part named the “Prefix”, and an Application-controlled part named the “Suffix”.

Note that the intent of these codes is to allow some part(s) of the Code to be matched independently from other parts of it, e.g. match the prefix (which is known in advance by monitoring UEs), but not the suffix --which may contain information unknown to the monitoring UEs in advance- e.g. application-controlled—and so can only be decoded after the Prefix is matched.

This contribution describes how a discovery message is protected between two UE based on security information provided to the UEs by their respective HPLMN ProSe Functions. A companion contribution (S3-151391) describes the flows that allocate that security information.
The applicable security measures are as follows:

1. Integrity of entire ProSe Code: If needed, this can be done via ProSe-Function-checked MICs just like for Open Discovery or by a locally checked MIC as described in this contribution. In the former case, the ProSe Function needs to provide the announcer/discoveree with a Discovery Key. In the latter case, both announcer and monitorer (discoveree/discoverer) UEs need to be provided with the information to able to calculate an integrity key. The ProSe Functions indicate which kind of integrity will be used for each ProSe Code as part of the Announce Request or Monitor Request procedures.
2. Anti-replay/tracking/impersonation of the ProSe Code: This can be achieved as in solution 8.3.2 of the current TR, but applying time-hashing to the message.
3. Confidentiality of the user specific bits: If needed, this can be done via XORing the user specific bits with a keystream derived from a key given by the Prose Function as associated with the assigned Prefix. In the case of a discovery filter that finds only one UE, this can be done by the time-hashing for 2 above (that is described below). Otherwise it is done as described below using a key that is specific for confidentiality and should be different for each UEs.
One solution can be as follows: A UE (that is either sending or receiving a discovery message) is provided with a Discovery User Master Key (DUMK) for an assigned ProSe Code for the sending UE and a discovery filter for the receiving UE. From this DUMK, a UE calculates as necessary:
· Discovery User Scrambling Key (DUSK), to calculate a time-hash bitsequence

· Discovery User Integrity Key (DUIK),

· Discovery User Confidentiality Key (DUCK), to protect the suffix if there is one.

The ProSe Function also provides mask(s) (of the same length as the ProSe Code) to indicate several needed parameters – the presence of these Masks and other parameters inform the UE what security to apply in this case:
- Key_calc_mask: selects which bits of message are used to calculate the DUCK/DUIK from the DUMK;
If a sending UE gets Key_calc_mask and no discovery key from the ProSe Function for a particular ProSe Code, then it shall apply integrity use the DUIK associated to that ProSe code to messages containing that ProSe Code. Similarly if a receiving UE gets Key_calc_mask and no MIC Refresh timer (from Rel-12 open discovery – see TS 33.303[34]), it checks the integrity of message for a particular discovery filter using the DUIK associated with that discovery filter.
- Encrypted_bits_mask: selects which bits are protected by DUCK (as opposed to the DUSK). This may be set to all zeros if the is no suffix.
If the sending UE or receiving UE get both Key_calc_mask and Encrypted_bits_mask from the ProSe Function, then it applies or removes confidentiality based on DUCK respectively.

- Scrambled_bits_mask: selects which bits scrambling protects (time-hash applied before announcing/ right after receiving). This could be set to all ones (i.e. select all the bits in the ProSe Code)
The sending or receiving UE gets the Scrambled_bits_mask, so it can apply or remove time-hashing to/from the message respectively.
We now describe solutions for measures 1 (using UE checked MICs), 2 and 3 above.

UE checked integrity
Both UE sending and receiving discovery message calculate the MIC as follows.

[image: image10.png]Key_calc_mask

DUMK

»

Message

=

KDF_1

DUIK

1

MiC

Function

MIC

I

UTC-based
cntr

Figure 1: Calculating the UE checked MIC
Scrambling time-hashing
Both the UE sending and the UE receiving a discovery message calculates the DUSK from DUMK. From it, a “Scrambling Time Hash” bitsequence is computed and then XOR’ed into the Discovery Message before sending (for receivers, it is XOR’ed into the received Discovery Message to recover the original Message). The receiving side can then check for matches.
This processing is shown in Figure 2:

[image: image2]
Figure 2: Processing of the Scrambling time hash (announcer).

We note that unlike the already-proposed solution where the time-hash depends on the Prefix and its length, this time-hash is based on a key with an appropriate length, not dependent on the Prefix length.
Message specific confidentiality
Both the UE sending and the UE receiving a discovery message calculates the DUCK from DUMK. The encryption is applied as shown in Figure 3:

[image: image3]
Figure 3: Processing of confidentiality protection.
Here we note that the sender UE (announcer) uses the bitsequence output of the AND operation to XOR into the Message that is formed by the application (prefix and suffix, unaltered). The receiver does the inverse operation.
Summary of steps for the sending UE:
1. Form the discovery message
2. If the sending UE received a Discovery Key with the ProSe Code, then the sender shall add a MIC calculated as in Rel-12. Otherwise if the sending UE received a Key_calc_mask, it shall applied integrity protection using DUIK as described above. If no integrity was applied then an all zero MIC is appended to the message to keep the final message the same length as the others.
3. If the sending UE received an Encrypted_bits_mask, it shall applies the message specific confidentiality as described above.
4. The sending UE performs the Scrambling time-hashing as described above.
Summary of steps for the receiving UE:

1. For each of its discovery filters, the receiving UE calculates the Scrambling Time Hash, selects the Scrambed_bits_mask; then XOR the result with the received TempID from the PC5 Discovery Message detected. It then checks if there is a match. If so, proceed to next step.
2. If the receiving UE received an Encrypted_bits_mask in the Discovery Filter, it shall remove the message specific confidentiality as described above.
3. If the receiving UE has a MIC Refresh Timer associated with the discovery filter, then it performs the Match Report procedure as in Rel-12 (e.g. first match for a ProSe Code or MIC Refresh timer has expired). Otherwise if it received a Key_calc_mask associated with the discovery filter, it shall check the MIC using the UE checked integrity procedures described above.
4. The receiving UE has recovered the original Discovery Message.
Security parameters provided depending on requirements

If the security requirements are:

· Scrambling only, then the PF sends the DUMK plus the Scrambled_bits_mask. This is the most basic security requirement, always applicable

· Scrambling plus UE-checked integrity: The PF sends the above plus the Key_calc_mask

· Scrambling plus UE-checked integrity plus confidentiality: the PF sends the above plus the Encrypted_bits_mask

· Scrambling plus PF-checked MIC: DUMK plus the Scrambled_bits_mask , and the Discovery Key (only to the Announcer), and a MIC refresh timer (only to the Monitorer).

· Scrambling plus PF-checked MIC plus confidentiality: The PF sends the above plus Encrypted_bits_mask.
2 Proposal
Proposed to modify the TR as follows:
*** FIRST CHANGE ****

8.3.X
Solution #8.3.X Protecting a Restricted Discovery Message (Model A and Model B)
8.3.X.1
General
This solutions describes how a discovery message is protected between two UE based on security information provided to the UEs by their respective HPLMN ProSe Function. A companion solution XXXX
 describes the flows that allocate that security information.
8.3.X.2
Overview of solution
The applicable security measures are as follows:

1. Integrity of entire ProSe Code: If needed, this can be done via ProSe-Function-checked MICs just like for Open Discovery or by a locally checked MIC as described in this contribution. In the former case, the ProSe Function needs to provide the announcer/discoveree with a Discovery Key. In the latter case, both announcer and monitorer (discoveree/discoverer) UEs need to be provided with the information to able to calculate an integrity key. The ProSe Functions indicate which kind of integrity will be used for each ProSe Code as part of the Announce Request or Monitor Request procedures.

2. Anti-replay/tracking/impersonation of the ProSe Code: This can be achieved as in solution 8.3.2 of the current TR, but applying time-hashing to the message.

3. Confidentiality of the user specific bits: If needed, this can be done via XORing the user specific bits with a keystream derived from a key given by the Prose Function as associated with the assigned Prefix. In the case of a discovery filter that finds only one UE, this can be done by the time-hashing for 2 above (that is described below). Otherwise it is done as described below using a key that is specific for confidentiality and should be different for each UEs.

One solution can be as follows: A UE (that is either sending or receiving a discovery message) is provided with a Discovery User Master Key (DUMK) for an assigned ProSe Code for the sending UE and a discovery filter for the receiving UE. From this DUMK, a UE calculates as necessary:
· Discovery User Scrambling Key (DUSK), to calculate a time-hash bitsequence

· Discovery User Integrity Key (DUIK),

· Discovery User Confidentiality Key (DUCK), to protect the suffix if there is one.

The ProSe Function also provides mask(s) (of the same length as the ProSe Code) to indicate several needed parameters – the presence of these Masks and other parameters inform the UE what security to apply in this case:
- Key_calc_mask: selects which bits of message are used to calculate the DUCK/DUIK from the DUMK;

If a sending UE gets Key_calc_mask and no discovery key from the ProSe Function for a particular ProSe Code, then it shall apply integrity use the DUIK associated to that ProSe code to messages containing that ProSe Code. Similarly if a receiving UE gets Key_calc_mask and no MIC Refresh timer (from Rel-12 open discovery – see TS 33.303[34]), it checks the integrity of message for a particular discovery filter using the DUIK associated with that discovery filter.

- Encrypted_bits_mask: selects which bits are protected by DUCK (as opposed to the DUSK). This may be set to all zeros if the is no suffix.

If the sending UE or receiving UE get both Key_calc_mask and Encrypted_bits_mask from the ProSe Function, then it applies or removes confidentiality based on DUCK respectively.

- Scrambled_bits_mask: selects which bits scrambling protects (time-hash applied before announcing/ right after receiving). This could be set to all ones (i.e. select all the bits in the ProSe Code)

The sending or receiving UE gets the Scrambled_bits_mask, so it can apply or remove time-hashing to/from the message respectively.

Editors’ Note: It is FFS whether to use the same or different masks (i.e. a different Key_calc_mask) for each case to calculate the DUCK and DUIK.
8.3.X.3
Security procedures
8.3.X.3.1
UE checked integrity
Both UE sending and receiving discovery message calculate the MIC as shown in Figure 8.3.X.3.1-1:

[image: image4]
Figure 8.3.X.3.1-1: Calculating the UE checked MIC
8.3.X.3.2
Scrambling time-hashing

Both the UE sending and the UE receiving a discovery message calculates the DUSK from DUMK. From it, a “Scrambling Time Hash” bitsequence is computed and then XOR’ed into the Discovery Message before sending (for receivers, it is XOR’ed into the received Discovery Message to recover the original Message). The receiving side can then check for matches.
This processing is shown in Figure 8.3.X.3.2-1:

[image: image5]

 SHAPE * MERGEFORMAT
Figure 8.3.X.3.2-1: Processing of the Scrambling time hash (announcer).

We note that unlike the already-proposed solution where the time-hash depends on the Prefix and its length, this time-hash is based on a key with an appropriate length, not dependent on the Prefix length.
8.3.X.3.3
Message specific confidentiality
Both the UE sending and the UE receiving a discovery message calculates the DUCK from DUMK. The encryption is applied as shown in Figure 8.3.X.3.3-1:

[image: image6]
Figure 8.3.X.3.3-1: Processing of confidentiality protection.
Here we note that the sender UE (announcer) uses the bitsequence output of the AND operation to XOR into the Message that is formed by the application (prefix and suffix, unaltered). The receiver does the inverse operation.
8.3.X.4
Processing of Discovery Message at the UEs

1. Form the discovery message

2. If the sending UE received a Discovery Key with the ProSe Code, then the sender shall add a MIC calculated as in Rel-12. Otherwise if the sending UE received a Key_calc_mask, it shall applied integrity protection using DUIK as described above. If no integrity was applied then an all zero MIC is appended to the message to keep the final message the same length as the others.
3. If the sending UE received an Encrypted_bits_mask, it shall applies the message specific confidentiality as described above.
4. The sending UE performs the Scrambling time-hashing as described above.
Summary of steps for the receiving UE:

1. For each of its discovery filters, the receiving UE calculates the Scrambling Time Hash, selects the Scrambed_bits_mask; then XOR the result with the received TempID from the PC5 Discovery Message detected. It then checks if there is a match. If so, proceed to next step.
2. If the receiving UE received an Encrypted_bits_mask in the Discovery Filter, it shall remove the message specific confidentiality as described above.
3. If the receiving UE has a MIC Refresh Timer associated with the discovery filter, then it performs the Match Report procedure as in Rel-12 (e.g. first match for a ProSe Code or MIC Refresh timer has expired). Otherwise if it received a Key_calc_mask associated with the discovery filter, it shall check the MIC using the UE checked integrity procedures described above.
4. The receiving UE has recovered the original Discovery Message.
8.3.X.5
ProSe Function control of used security

If the security requirements are:

· Scrambling only, then the PF sends the DUMK plus the Scrambled_bits_mask. This is the most basic security requirement, always applicable
· Scrambling plus UE-checked integrity: The PF sends the above plus the Key_calc_mask

· Scrambling plus UE-checked integrity plus confidentiality: the PF sends the above plus the Encrypted_bits_mask

· Scrambling plus PF-checked MIC: DUMK plus the Scrambled_bits_mask , and the Discovery Key (only to the Announcer), and a MIC refresh timer (only to the Monitorer).

· Scrambling plus PF-checked MIC plus confidentiality: The PF sends the above plus Encrypted_bits_mask.
*** END OF CHANGES ****[image: image7.png]

�Solution proposed in S3-151391

[image: image1][image: image8.png]Key_calc_mask

DUMK

Message

o

KDF_2

’ DUCK

l

UTC-based Keyed

cntr

hash fct

Keystream

Encrypted_bits_
mask

AND

(or_

Encrypted Message

[image: image9.png]DUMK

KDF_0

DUSK

UTC-based
ctr

Keyed
hash fct

Scrambled_bits_
mask

Time-hash

Announced TempID

Message

