Page 1

3GPP TSG SA WG3 Security — SA3#54
S3-090315
Florence, Italy, 19-23 January 2009
revision of S3-090183
	CR-Form-v9.4

	CHANGE REQUEST

	

	(

	35.215
	CR
	0001
	(

rev
	-
	(

Current version:
	8.0.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	X
	Radio Access Network
	X
	Core Network
	

	

	Title:
(

	Improvement to sample C code, and removal of apparent keystream length limit

	
	

	Source to WG:
(

	Vodafone

	Source to TSG:
(

	SA3

	
	

	Work item code:
(

	AlgUEA2
	
	Date: (

	20/01/2009

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-8

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)

	
	

	Reason for change:
(

	Existing sample C code is endian-dependent – it will work on some machines (typically Unix) but not others (typically Windows).
The current spec states a maximum UEA2 keystream length of 20000 bits, and a maximum UIA2 message size of 20000 bits. These are not really limits on the algorithms – just a maximum required length expected by UMTS at the time the spec was written. This apparent limit may conflict with the use of the algorithm for evolved applications (specifically for LTE).

	
	

	Summary of change:
(

	This CR replaces the C code with new code that is functionally equivalent but endian-independent. It also replaces the 20000-bit limit with a much higher limit.

	
	

	Consequences if
(

not approved:
	Developers using some machines will find it harder to use the sample C code to confirm correct operation of their UEA2 / UIA2 implementations. There will be continued confusion over the use of UEA2 and UIA2 for LTE and possibly other evolved applications.

	
	

	Clauses affected:
(

	2.1, 2.3, 3.1, 3.2, 4.1, Annex 4

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	Because the affected specification is an algorithm specification, and not published on the 3GPP web site, the document numbering and reference are rather unusual. On the 3GPP web site the document is listed as version 8.0.0, but in fact it is published on the GSMA web site at http://gsmworld.com/documents/etsi_sage_06_09_06.pdf, where it has the ETSI SAGE document version 1.1.

If the CR is approved, ETSI SAGE can produce the new document version if required (it would naturally receive the SAGE version number 1.2).
The new message limit is 232 bits. This is a “safe” value; it does not represent the limit to which the algorithms can be pushed, but should be more than adequate for future applications.

{Start of change}

2.1 Introduction

Within the security architecture of the 3GPP system there are standardised algorithms for confidentiality (f8) and integrity (f9). A first set of algorithms for f8 and f9 (UEA1 and UIA1) has already been specified [3]. A second set of algorithms for f8 and f9 (UEA2 and UIA2) are fully specified here: The second set of these algorithms is based on the SNOW 3G algorithm that is specified in a companion document [5].

The confidentiality algorithm UEA2 is a stream cipher that is used to encrypt/decrypt blocks of data under a confidentiality key CK. The block of data may be between 1 and 232 bits long. The algorithm uses SNOW 3G as a keystream generator

The integrity algorithm UIA2 computes a 32-bit MAC (Message Authentication Code) of a given input message using an integrity key IK. The message may be between 1 and 232 bits long. The approach adopted uses SNOW 3G.
Note: for both UEA2 and UIA2, the length limit of 232 bits is intended to be a safe value: comfortably lower than any point at which security of the algorithms starts to fail, but comfortably enough for any anticipated application.
{End of change}

{Start of change}
2.3
List of Variables

BEARER
the 5-bit input to the UEA2 function.

CK
the 128-bit confidentiality key.

COUNT
the 32-bit time variant input to the UEA2 and UIA2 functions (COUNT-C for UEA2 and COUNT-I for UIA2)
DIRECTION
the 1-bit input to both the UEA2 and UIA2 functions indicating the direction of transmission (uplink or downlink).

FRESH
the 32-bit random input to the UIA2 function.

IBS
the input bit stream to the UEA2 function.

IK
the 128-bit integrity key.

KS[i]
the ith bit of keystream produced by the keystream generator.

LENGTH
the input to the UEA2 and UIA2 functions which specifies the number of bits in the input bitstream (1-232).

MAC-I
the 32-bit message authentication code (MAC) produced by the integrity function UIA2.

MESSAGE
the input bitstream of LENGTH bits that is to be processed by the UIA2 function.

OBS
the output bit stream from the UEA2 function.

z1, z2, …
the 32-bit words forming the keystream sequence of SNOW 3G. The word produced first is z1, the next word z2 and so on.

{End of change}

{Start of change}
3.1 Introduction

The confidentiality algorithm UEA2 is a stream cipher that encrypts/decrypts blocks of data between 1 and 232 bits in length.
{End of change}

{Start of change}
3.2
Inputs and Outputs

The inputs to the algorithm are given in Table 1, the output in Table 2:

	Parameter
	Size (bits)
	Comment

	COUNT-C
	32
	Frame dependent input COUNT-C[0]…COUNT-C[31]

	BEARER
	5
	Bearer identity BEARER[0]…BEARER[4]

	DIRECTION
	1
	Direction of transmission DIRECTION[0]

	CK
	128
	Confidentiality key CK[0]….CK[127]

	LENGTH
	Unspecified
	The number of bits to be encrypted/decrypted

	IBS
	LENGTH
	Input bit stream IBS[0]….IBS[LENGTH-1]

Table 1. UEA2 inputs
	Parameter
	Size (bits)
	Comment

	OBS
	LENGTH
	Output bit stream OBS[0]….OBS[LENGTH-1]

Table 2. UEA2 output
{End of change}

{Start of change}
4.1 Introduction
The integrity algorithm UIA2 computes a Message Authentication Code (MAC) on an input message under an integrity key IK. The message may be between 1 and 232 bits in length.
For ease of implementation the algorithm is based on the same stream cipher (SNOW 3G) as is used by the confidentiality algorithm UEA2.
{End of change}

{Start of change}

ANNEX 4

Simulation Program Listing

4.1.
UEAII

4.2.1 Header File

/*---

 *

f8.h

 ---/

#ifndef F8_H_

#define F8_H_

#include "SNOW_3G.h"

/* f8.

 * Input key: 128 bit Confidentiality Key.

 * Input count:32-bit Count, Frame dependent input.

 * Input bearer: 5-bit Bearer identity (in the LSB side).

 * Input dir:1 bit, direction of transmission.

 * Input data: length number of bits, input bit stream.

 * Input length: 32 bit Length, i.e., the number of bits to be encrypted or

 * decrypted.

 * Output data: Output bit stream. Assumes data is suitably memory

 * allocated.

 * Encrypts/decrypts blocks of data between 1 and 2^32 bits in length as

 * defined in Section 3.

 */

void f8(u8 *key, u32 count, u32 bearer, u32 dir, u8 *data, u32 length);

#endif
4.2.2 Code

/*---

 *

f8.c
 ---/

#include "f8.h"

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

/* f8.

 * Input key: 128 bit Confidentiality Key.

 * Input count:32-bit Count, Frame dependent input.

 * Input bearer: 5-bit Bearer identity (in the LSB side).

 * Input dir:1 bit, direction of transmission.

 * Input data: length number of bits, input bit stream.

 * Input length: 32 bit Length, i.e., the number of bits to be encrypted or

 * decrypted.

 * Output data: Output bit stream. Assumes data is suitably memory

 * allocated.

 * Encrypts/decrypts blocks of data between 1 and 2^32 bits in length as

 * defined in Section 3.

 */

void f8(u8 *key, u32 count, u32 bearer, u32 dir, u8 *data, u32 length)

{

 u32 K[4],IV[4];

 int n = (length + 31) / 32;

 int i=0;

 u32 *KS;

 /*Initialisation*/

 /* Load the confidentiality key for SNOW 3G initialization as in section 3.4. */

 for (i=0; i<4; i++)

 K[3-i] = (key[4*i] << 24) ^ (key[4*i+1] << 16) ^ (key[4*i+2] << 8) ^ (key[4*i+3]);
 /* Prepare the initialization vector (IV) for SNOW 3G initialization as in section 3.4. */

 IV[3] = count;

 IV[2] = (bearer << 27) | ((dir & 0x1) << 26);

 IV[1] = IV[3];

 IV[0] = IV[2];

 /* Run SNOW 3G algorithm to generate sequence of key stream bits KS*/

 Initialize(K,IV);

 KS = (u32 *)malloc(4*n);

 GenerateKeystream(n,(u32*)KS);

 /* Exclusive-OR the input data with keystream to generate the output bit stream */

 for (i=0; i<n; i++)

 {

 data[4*i+0] ^= (u8) (KS[i] >> 24) & 0xff;

 data[4*i+1] ^= (u8) (KS[i] >> 16) & 0xff;

 data[4*i+2] ^= (u8) (KS[i] >> 8) & 0xff;

 data[4*i+3] ^= (u8) (KS[i]) & 0xff;

 }
 free(KS);

}

/* End of f8.c */

4.2
UIAII

4.2.1
Header File

/*---

 *

f9.h

 ---/

#ifndef F9_H_

#define F9_H_

#include "SNOW_3G.h"

/* f9.

 * Input key: 128 bit Integrity Key.

 * Input count:32-bit Count, Frame dependent input.

 * Input fresh: 32-bit Random number.

 * Input dir:1 bit, direction of transmission (in the LSB).

 * Input data: length number of bits, input bit stream.

 * Input length: 64 bit Length, i.e., the number of bits to be MAC'd.

 * Output : 32 bit block used as MAC

 * Generates 32-bit MAC using UIA2 algorithm as defined in Section 4.

 */

u8* f9(u8* key, u32 count, u32 fresh, u32 dir, u8 *data, u64 length);

#endif

4.2.2
Code

/*---

 *

f9.c
 ---/

#include "f9.h"

#include <stdio.h>

#include <math.h>

#include <string.h>

/* MUL64x.

 * Input V: a 64-bit input.

 * Input c: a 64-bit input.

 * Output : a 64-bit output.

 * A 64-bit memory is allocated which is to be freed by the calling

 * function.

 * See section 4.3.2 for details.

 */

u64 MUL64x(u64 V, u64 c)

{

 if (V & 0x8000000000000000)

return (V << 1) ^ c;

 else

return V << 1;

}

/* MUL64xPOW.

 * Input V: a 64-bit input.

 * Input i: a positive integer.

 * Input c: a 64-bit input.

 * Output : a 64-bit output.

 * A 64-bit memory is allocated which is to be freed by the calling function.

 * See section 4.3.3 for details.

 */

u64 MUL64xPOW(u64 V, u8 i, u64 c)

{

 if (i == 0)

return V;

 else

return MUL64x(MUL64xPOW(V,i-1,c) , c);

}

/* MUL64.

 * Input V: a 64-bit input.

 * Input P: a 64-bit input.

 * Input c: a 64-bit input.

 * Output : a 64-bit output.

 * A 64-bit memory is allocated which is to be freed by the calling

 * function.

 * See section 4.3.4 for details.

 */

u64 MUL64(u64 V, u64 P, u64 c)

{

 u64 result = 0;

 int i = 0;

 for (i=0; i<64; i++)

 {

if((P>>i) & 0x1)

 result ^= MUL64xPOW(V,i,c);

 }

 return result;

}

/* mask8bit.

 * Input n: an integer in 1-7.

 * Output : an 8 bit mask.

 * Prepares an 8 bit mask with required number of 1 bits on the MSB side.

 */

u8 mask8bit(int n)

{

 return 0xFF ^ ((1<<(8-n)) - 1);

}
/* f9.

 * Input key: 128 bit Integrity Key.

 * Input count:32-bit Count, Frame dependent input.

 * Input fresh: 32-bit Random number.

 * Input dir:1 bit, direction of transmission (in the LSB).

 * Input data: length number of bits, input bit stream.

 * Input length: 64 bit Length, i.e., the number of bits to be MAC'd.

 * Output : 32 bit block used as MAC

 * Generates 32-bit MAC using UIA2 algorithm as defined in Section 4.

 */

u8* f9(u8* key, u32 count, u32 fresh, u32 dir, u8 *data, u64 length)

{

 u32 K[4],IV[4], z[5];

 u32 i=0,D;

 static u8 MAC_I[4] = {0,0,0,0}; /* static memory for the result */
 u64 EVAL;

 u64 V;

 u64 P;

 u64 Q;

 u64 c;

 u64 M_D_2;

 int rem_bits = 0;

 u32 mac32 = 0;

 /* Load the Integrity Key for SNOW3G initialization as in section 4.4. */

 for (i=0; i<4; i++)

 K[3-i] = (key[4*i] << 24) ^ (key[4*i+1] << 16) ^ (key[4*i+2] << 8) ^ (key[4*i+3]);
 /* Prepare the Initialization Vector (IV) for SNOW3G initialization as in section 4.4. */

 IV[3] = count;

 IV[2] = fresh;

 IV[1] = count ^ (dir << 31) ;

 IV[0] = fresh ^ (dir << 15);

 z[0] = z[1] = z[2] = z[3] = z[4] = 0;

 /* Run SNOW 3G to produce 5 keystream words z_1, z_2, z_3, z_4 and z_5. */

 Initialize(K,IV);

 GenerateKeystream(5,z);

 P = (u64)z[0] << 32 | (u64)z[1];

 Q = (u64)z[2] << 32 | (u64)z[3];

 /* Calculation */

 if ((length % 64) == 0)

 D = (length>>6) + 1;

 else

 D = (length>>6) + 2;
 EVAL = 0;

 c = 0x1b;

 /* for 0 <= i <= D-3 */

 for (i=0;i<D-2;i++)

 {

 V = EVAL ^ ((u64)data[8*i]<<56 | (u64)data[8*i+1]<<48 | (u64)data[8*i+2]<<40 | (u64)data[8*i+3]<<32 |

 (u64)data[8*i+4]<<24 | (u64)data[8*i+5]<<16 | (u64)data[8*i+6]<< 8 | (u64)data[8*i+7]);

 EVAL = MUL64(V,P,c);

 }

 /* for D-2 */

 rem_bits = length % 64;

 if (rem_bits == 0)

 rem_bits = 64;

 M_D_2 = 0;

 i = 0;

 while (rem_bits > 7)

 {

 M_D_2 |= (u64)data[8*(D-2)+i] << (8*(7-i));

 rem_bits -= 8;

 i++;

 }

 if (rem_bits > 0)

 M_D_2 |= (u64)(data[8*(D-2)+i] & mask8bit(rem_bits)) << (8*(7-i));
 V = EVAL ^ M_D_2;

 EVAL = MUL64(V,P,c);

 /* for D-1 */

 EVAL ^= length;

 /* Multiply by Q */

 EVAL = MUL64(EVAL,Q,c);

 mac32 = (u32)(EVAL >> 32) ^ z[4];

 for (i=0; i<4; i++)

 MAC_I[i] = (mac32 >> (8*(3-i))) & 0xff;

 return MAC_I;
}

/* End of f9.c */

/*--*/

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

