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{Start of change}

2.1 Introduction

Within the security architecture of the 3GPP system there are standardised algorithms for confidentiality (f8) and integrity (f9). A first set of algorithms for f8 and f9 (UEA1 and UIA1) has already been specified [3]. A second set of algorithms for f8 and f9 (UEA2 and UIA2) are fully specified here: The second set of these algorithms is based on the SNOW 3G algorithm that is specified in a companion document [5].

The confidentiality algorithm UEA2 is a stream cipher that is used to encrypt/decrypt blocks of data under a confidentiality key CK. The block of data may be between 1 and 232 bits long. The algorithm uses SNOW 3G as a keystream generator

The integrity algorithm UIA2 computes a 32-bit MAC (Message Authentication Code) of a given input message using an integrity key IK. The message may be between 1 and 232 bits long. The approach adopted uses SNOW 3G.
Note: for both UEA2 and UIA2, the length limit of 232 bits is intended to be a safe value: comfortably lower than any point at which security of the algorithms starts to fail, but comfortably enough for any anticipated application.
{End of change}

{Start of change}
2.3
List of Variables

BEARER
the 5-bit input to the UEA2 function.

CK
the 128-bit confidentiality key.

COUNT
the 32-bit time variant input to the UEA2 and UIA2 functions (COUNT-C for UEA2 and COUNT-I for UIA2)
DIRECTION
the 1-bit input to both the UEA2 and UIA2 functions indicating the direction of transmission (uplink or downlink).

FRESH
the 32-bit random input to the UIA2 function.

IBS
the input bit stream to the UEA2 function.

IK
the 128-bit integrity key.

KS[i]
the ith bit of keystream produced by the keystream generator.

LENGTH
the input to the UEA2 and UIA2 functions which specifies the number of bits in the input bitstream (1-232).

MAC-I
the 32-bit message authentication code (MAC) produced by the integrity function UIA2.

MESSAGE
the input bitstream of LENGTH bits that is to be processed by the UIA2 function.

OBS
the output bit stream from the UEA2 function.

z1, z2, …
the 32-bit words forming the keystream sequence of SNOW 3G. The word produced first is z1, the next word z2 and so on.

{End of change}

{Start of change}
3.1 Introduction

The confidentiality algorithm UEA2 is a stream cipher that encrypts/decrypts blocks of data between 1 and 232 bits in length.
{End of change}

{Start of change}
3.2
Inputs and Outputs

The inputs to the algorithm are given in Table 1, the output in Table 2:

	Parameter
	Size (bits)
	Comment

	COUNT-C
	32
	Frame dependent input COUNT-C[0]…COUNT-C[31]

	BEARER
	5
	Bearer identity BEARER[0]…BEARER[4]

	DIRECTION
	1
	Direction of transmission DIRECTION[0]

	CK
	128
	Confidentiality key CK[0]….CK[127]

	LENGTH
	Unspecified
	The number of bits to be encrypted/decrypted

	IBS
	LENGTH
	Input bit stream IBS[0]….IBS[LENGTH-1]


Table 1. UEA2 inputs
	Parameter
	Size (bits)
	Comment

	OBS
	LENGTH
	Output bit stream  OBS[0]….OBS[LENGTH-1]


Table 2. UEA2 output
{End of change}

{Start of change}
4.1 Introduction
The integrity algorithm UIA2  computes a Message Authentication Code (MAC) on an input message under an integrity key IK. The message may be between 1 and 232 bits in length.
For ease of implementation the algorithm is based on the same stream cipher (SNOW 3G) as is used by the confidentiality algorithm UEA2.
{End of change}

{Start of change}

ANNEX 4

Simulation Program Listing

4.1.
UEAII

4.2.1 Header File

/*---------------------------------------------------------

 *




f8.h

 *---------------------------------------------------------*/

#ifndef F8_H_

#define F8_H_

#include "SNOW_3G.h"

/* f8.

 * Input key: 128 bit Confidentiality Key.

 * Input count:32-bit Count, Frame dependent input.

 * Input bearer: 5-bit Bearer identity (in the LSB side).

 * Input dir:1 bit, direction of transmission.

 * Input data: length number of bits, input bit stream.

 * Input length: 32 bit Length, i.e., the number of bits to be encrypted or 

 *               decrypted.

 * Output data: Output bit stream. Assumes data is suitably memory 

 * allocated.

 * Encrypts/decrypts blocks of data between 1 and 2^32 bits in length as 

 * defined in Section 3.

 */

void f8( u8 *key, u32 count, u32 bearer, u32 dir, u8 *data, u32 length );

#endif
4.2.2 Code

/*---------------------------------------------------------

 *




f8.c
 *---------------------------------------------------------*/

#include "f8.h"

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

/* f8.

 * Input key: 128 bit Confidentiality Key.

 * Input count:32-bit Count, Frame dependent input.

 * Input bearer: 5-bit Bearer identity (in the LSB side).

 * Input dir:1 bit, direction of transmission.

 * Input data: length number of bits, input bit stream.

 * Input length: 32 bit Length, i.e., the number of bits to be encrypted or 

 *               decrypted.

 * Output data: Output bit stream. Assumes data is suitably memory 

 * allocated.

 * Encrypts/decrypts blocks of data between 1 and 2^32 bits in length as 

 * defined in Section 3.

 */

void f8( u8 *key, u32 count, u32 bearer, u32 dir, u8 *data, u32 length )

{

  u32 K[4],IV[4];

  int n = ( length + 31 ) / 32;

  int i=0;

  u32 *KS;

  /*Initialisation*/

  /* Load the confidentiality key for SNOW 3G initialization as in section 3.4. */







  for (i=0; i<4; i++)

    K[3-i] = (key[4*i] << 24) ^ (key[4*i+1] << 16) ^ (key[4*i+2] << 8) ^ (key[4*i+3]);
  /* Prepare the initialization vector (IV) for SNOW 3G initialization as in section 3.4. */

  IV[3] = count;

  IV[2] = (bearer << 27) | ((dir & 0x1) << 26);

  IV[1] = IV[3];

  IV[0] = IV[2];

  /* Run SNOW 3G algorithm to generate sequence of key stream bits KS*/

  Initialize(K,IV);

  KS = (u32 *)malloc(4*n);

  GenerateKeystream(n,(u32*)KS); 

  /* Exclusive-OR the input data with keystream to generate the output bit stream */



  for (i=0; i<n; i++)

  {

    data[4*i+0] ^= (u8) (KS[i] >> 24) & 0xff;

    data[4*i+1] ^= (u8) (KS[i] >> 16) & 0xff;

    data[4*i+2] ^= (u8) (KS[i] >>  8) & 0xff;

    data[4*i+3] ^= (u8) (KS[i]      ) & 0xff;

  }
  free(KS);

}

/* End of f8.c */

4.2
UIAII

4.2.1
Header File

/*---------------------------------------------------------

 *




f9.h

 *---------------------------------------------------------*/

#ifndef F9_H_

#define F9_H_

#include "SNOW_3G.h"

/* f9.

 * Input key: 128 bit Integrity Key.

 * Input count:32-bit Count, Frame dependent input.

 * Input fresh: 32-bit Random number.

 * Input dir:1 bit, direction of transmission (in the LSB).

 * Input data: length number of bits, input bit stream.

 * Input length: 64 bit Length, i.e., the number of bits to be MAC'd.

 * Output  : 32 bit block used as MAC

 * Generates 32-bit MAC using UIA2 algorithm as defined in Section 4.

 */

u8* f9( u8* key, u32 count, u32 fresh, u32 dir, u8 *data, u64 length);

#endif

4.2.2
Code

/*---------------------------------------------------------

 *




f9.c
 *---------------------------------------------------------*/

#include "f9.h"

#include <stdio.h>

#include <math.h>

#include <string.h>

/* MUL64x.

 * Input V: a 64-bit input.

 * Input c: a 64-bit input.

 * Output : a 64-bit output.

 * A 64-bit memory is allocated which is to be freed by the calling 

 * function.

 * See section 4.3.2 for details.

 */

u64 MUL64x(u64 V, u64 c)

{

   if ( V & 0x8000000000000000 )


return (V << 1) ^ c;

   else


return V << 1;

}

/* MUL64xPOW.

 * Input V: a 64-bit input.

 * Input i: a positive integer.

 * Input c: a 64-bit input.

 * Output : a 64-bit output.

 * A 64-bit memory is allocated which is to be freed by the calling function.

 * See section 4.3.3 for details.

 */

u64 MUL64xPOW(u64 V, u8 i, u64 c)

{

   if ( i == 0)


return V; 

   else


return MUL64x( MUL64xPOW(V,i-1,c) , c);

}

/* MUL64.

 * Input V: a 64-bit input.

 * Input P: a 64-bit input.

 * Input c: a 64-bit input.

 * Output : a 64-bit output.

 * A 64-bit memory is allocated which is to be freed by the calling 

 * function.

 * See section 4.3.4 for details.

 */

u64 MUL64(u64 V, u64 P, u64 c)

{

   u64 result = 0;

   int i = 0;

   for ( i=0; i<64; i++)

   {


if( ( P>>i ) & 0x1 )


   result ^= MUL64xPOW(V,i,c);

   }

   return result;

}















/* mask8bit.

 * Input n: an integer in 1-7.

 * Output : an 8 bit mask.

 * Prepares an 8 bit mask with required number of 1 bits on the MSB side.

 */

u8 mask8bit(int n)

{

  return 0xFF ^ ((1<<(8-n)) - 1);

}
/* f9.

 * Input key: 128 bit Integrity Key.

 * Input count:32-bit Count, Frame dependent input.

 * Input fresh: 32-bit Random number.

 * Input dir:1 bit, direction of transmission (in the LSB).

 * Input data: length number of bits, input bit stream.

 * Input length: 64 bit Length, i.e., the number of bits to be MAC'd.

 * Output  : 32 bit block used as MAC 

 * Generates 32-bit MAC using UIA2 algorithm as defined in Section 4.

 */

u8* f9( u8* key, u32 count, u32 fresh, u32 dir, u8 *data, u64 length)

{

  u32 K[4],IV[4], z[5];

  u32 i=0,D;


  static u8 MAC_I[4] = {0,0,0,0}; /* static memory for the result */
  u64 EVAL;

  u64 V;

  u64 P;

  u64 Q;

  u64 c;

  u64 M_D_2;

  int rem_bits = 0;



  u32 mac32 = 0;

  /* Load the Integrity Key for SNOW3G initialization as in section 4.4. */







  for (i=0; i<4; i++)

    K[3-i] = (key[4*i] << 24) ^ (key[4*i+1] << 16) ^ (key[4*i+2] << 8) ^ (key[4*i+3]);
  /* Prepare the Initialization Vector (IV) for SNOW3G initialization as in section 4.4. */

  IV[3] = count;

  IV[2] = fresh;

  IV[1] = count ^ ( dir << 31 ) ;

  IV[0] = fresh ^ (dir << 15);

  z[0] = z[1] = z[2] = z[3] = z[4] = 0;

  /* Run SNOW 3G to produce 5 keystream words z_1, z_2, z_3, z_4 and z_5. */

  Initialize(K,IV);

  GenerateKeystream(5,z);

  P = (u64)z[0] << 32 | (u64)z[1];

  Q = (u64)z[2] << 32 | (u64)z[3];

  /* Calculation */


  if ((length % 64) == 0)

    D = (length>>6) + 1;

  else

    D = (length>>6) + 2;
  EVAL = 0;

  c = 0x1b;

  /* for 0 <= i <= D-3 */

  for (i=0;i<D-2;i++)

  {


     V = EVAL ^ ( (u64)data[8*i  ]<<56 | (u64)data[8*i+1]<<48 | (u64)data[8*i+2]<<40 | (u64)data[8*i+3]<<32 | 

                  (u64)data[8*i+4]<<24 | (u64)data[8*i+5]<<16 | (u64)data[8*i+6]<< 8 | (u64)data[8*i+7] );

     EVAL = MUL64(V,P,c);

  }

  /* for D-2 */

  rem_bits = length % 64;

  if (rem_bits == 0)

     rem_bits = 64;









  M_D_2 = 0;

  i = 0;

  while (rem_bits > 7)

  {

    M_D_2 |= (u64)data[8*(D-2)+i] << (8*(7-i));

    rem_bits -= 8;

    i++;

  }

  if (rem_bits > 0)

    M_D_2 |= (u64)(data[8*(D-2)+i] & mask8bit(rem_bits)) << (8*(7-i));
  V = EVAL ^ M_D_2;

  EVAL = MUL64(V,P,c);

  /* for D-1 */

  EVAL ^= length;  

  /* Multiply by Q */

  EVAL = MUL64(EVAL,Q,c);



  mac32 = (u32)(EVAL >> 32) ^ z[4];

  for (i=0; i<4; i++)

    MAC_I[i] = (mac32 >> (8*(3-i))) & 0xff;

  return MAC_I;
}

/* End of f9.c */

/*------------------------------------------------------------------------*/
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