3GPP TSG-SA WG3 (Security) Meeting #48 
Tdoc S3-070572
Montreal, Canada, 10-13 July 2007
Source:

Vodafone

Title:
B-TID uniqueness
Document for:
Discussion and decision

Agenda Item:
6.7.2
Problem statement

B-TID is used as an identifier for the key material generated as a result of a bootstrapping run. According to TS 33.220 it is generated in the BSF as follows:

base64encode(RAND)@BSF_servers_domain_name
RAND is the 128 bit random challenge associated with the bootstrapping run that was used to generate the key material to be identified using the B-TID.

To ensure the uniqueness of B-TID, all the B-TID associated with key material currently managed by the BSF must use unique RAND values. If the HSS/AuC uses a good random number generator, then in practice the chance of a B-TID collision is zero, even for BSF that support millions of users. However, if the AuC uses a poor random number generator, then it could happen that B-TID collisions occur in practice. In addition, the HSS/AuC does not know the life time of B-TIDs in the BSF context which prevents the HSS/AuC from re-using previous RAND values. Although it could be argued that we should not introduce changes to the specifications in order to accommodate (and therefore in some way encourage) "bad" HSS/AuC implementations, it can also be argued that the dependancy of the BSF on the HSS/AuC behaviour should be avoided. 

Possible solutions

In the following we analyse three solutions to avoid B-TID collisions.

1) Let the BSF decide how to generate a unique B-TID
This would involve changing the way B-TID is generated in the BSF so that the BSF is soley responsible to determining how to generate unique B-TIDs. The B-TID could be kept in the form identifier@BSF_server_domain_name, but the BSF would not have to generate the identifier part from RAND. This would remove the dependency on the HSS/AuC, but it may cause interoperability problems with some UEs that do not store RAND but instead assume that RAND can always be obtained from B-TID. 

While one would hope that a "good" UE implementation would not make any assumptions about how B-TID is generated and therefore store RAND separately, it cannot be guaranteed that all UE implementations would behave like this. This is especially true because some parts of the specification hint that it may be acceptable to obtain RAND from B-TID. For example, at the end of section 4.5.2 in TS 33.220 it is indicated that the UE and the BSF shall store the key Ks with the associated B-TID for further use - no mention is made of the need to additionally store RAND. Having said this, the USIM and ISIM do have dedicated storage reserved for the RAND value (section 4.2.79 in TS 31.102).
2) Define rules in the BSF to discard authentication vectors that would cause a B-TID collision

This would involve checking the RAND value in each new authentication vector and discarding the vector if it would cause a B-TID collision. However, this is problematic because, if the HSS/AuC RAND generation is such that there is one collision, then it is very likely to be many collisions which would result in many authentication vectors being discarded which would be inefficient. In addition, the uniqueness check in the BSF may impose a significant burden on the BSF.
3) Highlight the dependency on the HSS/AuC to generate unique RAND values for GBA purposes

This would involve simply highlighting the dependency of the BSF on the HSS/AuC behaviour in the GBA specifications. It could be argued that imposing a requirement on the HSS/AuC is acceptable because the BSF is likely to be closely associated with the HSS/AuC. Recall that the current GBA specifications require that the BSF is located in the home network.

Proposal

It is proposed that SA3 discuss the problem and the possible solutions identified in this document and decide on which approach should be taken to avoid B-TID collisions.








































































































































































