3GPP TSG SA WG3 Security — SA3#45
S3-060703
31 October - 3 November, 2006

Ashburn, USA
Source:
Ericsson
Title:
Synchronization failures with Ks shared between GBA Push and normal GBA
Agenda item:
6.9.5
Document for:
Discussion and decision

1 Introduction
This contribution contains an analysis of synchronization problems that arise when re-using a Ks (i.e., sharing it between GBA Push and normal GBA) in the single-active-Ks model.
We assume that the NAF is the network node that pushes the GBA_PUSH_INFO to the UE. In theory the BSF can push the GBA_PUSH_INFO to the UE as well, but this can only lead to more synchronization problems.
2 Analysis
2.1
Model and setting
In the single active Ks model (with Ks sharing), there is only one active Ks installed in the BSF and the UE at any moment in time (this Ks will be referred to as the current BSF-Ks). The BSF will overwrite its current BSF-Ks when the UE performs a new bootstrapping according to TS 33.220.
There are two NAFs who can communicate with the UE, a push NAF called pNAF and a normal (TS 33.220) NAF called nNAF. There may of course be more than one Push NAF and one normal NAF, but it suffices to consider one of each type to show that there are interworking problems.

The nNAF uses the normal way to establish a Ks according to TS 33.220, and pNAF pushes GBA_PUSH_INFO to the UE to establish a Ks.
2.2
GBA Push and normal GBA Interaction failures
In the message sequence chart below, it can be seen that a normal bootstrapping from the UE, that happens between the request for GBA_PUSH_INFO and the Push_establish_Ks messages from the pNAF, will cause the BSF to loose synchronization with the UE w.r.t. the Ks. This causes problems for normal NAFs. Note that the delay between the request for the GBA_PUSH_INFO and the Push_establish_Ks messages may be of considerable length, so this cannot be assumed to be a rare case.
At first it may seem as if the BSF could simply (re)establish Ks_1 when the UE performs the bootstrapping, but as noted above this option is not viable since TS 33.220 requires that a bootstrapping shall result in a new Ks.

The situation is not a deadlock, but it requires the UE to do yet another bootstrapping with the BSF to get back in synchronization, which is wasteful and can be avoided.

[image: image1.emf]BSF

UE pNAF nNAF

Get_push_info

Ks = Ks_1

GBA_PUSH_INFO(Ks_1)

Bootstrap

Ks = Ks_2 Ks = Ks_2

Push_establish_Ks

Ks = Ks_1

App_msg(Ks_1)

Contact(B-TID of Ks_1)

Get_Ks_NAF(B-TID of Ks_1)

Ks_1 is gone!

To resolve the error, the nNAF may request the UE to perform another bootstrapping. This is shown in the figure below. The new signalling compared to the above figure is indicated by the grey rectangle. As the rebootstrap is performed by the UE, Ks_1 will be overwritten in the UE's storage, so when the pNAF tries to push another message to the UE, the UE will not be able to derive the corresponding Ks_pNAF. The UE application may already have derived the Ks_pNAF when receiving the first App_msg from the pNAF, but considering the case that the first message got lost in transmission, the problem remains.

[image: image2.emf]BSF

UE pNAF nNAF

Get_push_info

Ks = Ks_1

GBA_PUSH_INFO(Ks_1)

Bootstrap

Ks = Ks_2 Ks = Ks_2

Push_establish_Ks

Ks = Ks_1

App_msg(Ks_1)

Contact(B-TID of Ks_1)

Get_Ks_NAF(B-TID of Ks_1)

Ks_1 is gone

Bootstrap

Ks = Ks_3 Ks = Ks_3

No_such_Ks

Re_bootstrap!

App_msg(Ks_1)

Ks_1 is gone

The conclusion that can be drawn from this is that it is not possible for the UE to derive the Ks_pNAF when receiving the application message. The only alternative is to derive the Ks_pNAF when receiving the Push_establish_Ks message from the pNAF, and store the Ks_pNAF in the application.
From the above conclusion it also follows that pushing the Ks establishment message from the BSF directly to the UE is not a viable approach, and that it has to come from the NAF.

There are currently three proposed ways around this problem, including the use of disposable Ks:es and multiple Ks:es.
1. Disposable Ks:es is the model in which a Push NAF pushes the GBA_PUSH_INFO to the UE, and the UE derives the Ks_pNAF immediately (via the Ks), but the Ks is never stored in the UE as such, only the Ks_pNAF is stored in the application running in the UE. Subsequent pushes from the same NAF will be protected by keys derived from the Ks_pNAF, so there is no need to request a new Ks for each push. The BSF does not store any Ks:es for Push NAF:s, since there is no need to (the normal GBA Ks is of course still stored).

2. In the one Ks per NAF model, the BSF and the UE stores a Ks per NAF, and each NAF pushes "its own" GBA_PUSH_INFO to establish its own Ks in the UE (the effect would be the same as in 1). The UE needs to store one Ks per NAF and the BSF needs to store one Ks per NAF-UE pair.
3. In the two Ks model, the BSF stores one Ks for normal GBA and one Ks for GBA Push (on a per UE basis). The Push Ks can be re-used between Push NAFs.
These three models require further study, but the third model has some obvious problems. Since push messages may be delivered over, e.g., SMS, and hence may be delayed, re-ordered or dropped. This implies that, e.g., if the Ks establishment messages from a Push NAF is dropped, other Push NAFs relying on the Ks being in place will not be able to push their application messages. Furthermore, application messages from one Push NAF may arrive before the Ks establishment message has arrived etc.

3 Conclusion and proposal
Since sharing a Ks between GBA Push and normal GBA leads to synchronization failures and there are proposals that avoids these, it is proposed that it is taken as working assumption (and is documented in the TR) that GBA Push and normal GBA shall not share the same Ks.
It needs to be further studied which solution is chosen to separate the push Ks and the normal Ks. It is proposed that solution 1 and 2 above are taken as the working assumption, and that any other solution would have to be measured against these.
It is also proposed that it is taken as working assumption (and is documented in the TR) that the Ks_NAF shall be derived in the UE when the GBA_PUSH_INFO is delivered from the Push NAF.
_1222523662.ppt

BSF

UE

pNAF

nNAF

Get_push_info

Ks = Ks_1

GBA_PUSH_INFO(Ks_1)

Bootstrap

Ks = Ks_2

Ks = Ks_2

Push_establish_Ks

Ks = Ks_1

App_msg(Ks_1)

Contact(B-TID of Ks_1)

Get_Ks_NAF(B-TID of Ks_1)

Ks_1 is gone!

