AKA usage in 3GPP

TR-45 AHAG joint session 8th July 2004

Peter Howard
SA3 vice-chairman
Contents

- Status of 3GPP AKA itself
- Usage of AKA in different contexts
 - Access security to IMS (Release 5)
 - WLAN interworking security (Release 6)
 - Secure WLAN access to Internet connectivity
 - Secure WLAN access to 3GPP services
 - Generic Authentication Architecture (Release 6)
 - Secure list management for presence service
 - including generic solution for securing HTTP based services
 - Key management for Multimedia Broadcast/Multicast Service (MBMS)
Status of AKA itself

• AKA is specified in TS 33.102
 – No changes to the AKA mechanism itself for several years now
 – Based on feedback from stage 3 working groups, SA3 has made a clarification to the authentication re-attempt parameter in the Release 6 version of 33.102, see S3-040400

• An example algorithm set (MILENAGE) is specified in TSs 35.205 – 208
 – No changes since approval
IMS security architecture

- IMS home
- IMS visited
- PS domain

- Authentication & key agreement
- R99 access security
- Integrity protection
- Security mechanism agreement
- Network domain security

IMS security architecture diagram:

- IMS home
- IMS visited
- PS domain

Connections:

- IMS home to IMS visited
- IMS visited to PS domain
- PS domain to IMS home
- Authentication & key agreement
- R99 access security
- Integrity protection
- Security mechanism agreement
- Network domain security
ISIM

ISIM is a term that indicates the collection of IMS security data and functions on a UICC. The following implementation options are permitted:

- Use of a distinct ISIM application on a UICC which does not share security functions with the USIM
- Use of a distinct ISIM application on a UICC which does share security functions with the USIM
- Use of a R99/Rel-4 USIM application on a UICC
IMS authentication and key agreement

- Re-use of UMTS AKA protocol
 - Implemented on a UICC in the UA
- UMTS AKA protocol integrated into IMS SIP signalling according to HTTP Digest AKA (RFC3310)
Access security architecture

• Initial authentication based on long-term SA
 – Protocol is run between UA and SIP proxy server (the S-CSCF) in home network
 – UA uses SA credentials and functions stored in ISIM
 – SIP proxy server (S-CSCF) interacts with authentication server (the HSS) in home network using Diameter Cx application

• Subsequent signalling messages between UA and first hop SIP proxy (the P-CSCF) are protected using short-term SA created during initial authentication
 – Session keys for integrity at SIP proxy server (S-CSCF) are passed to an authorised first hop SIP proxy (P-CSCF) further downstream
 – ISIM at user side securely delegates keys to UA

• Message protection is applied directly after initial authentication
Authentication at registration

- Authentication can only occur during registration
- Initial registration is always authenticated
- IMS private id (NAI) is used as the basis for authentication
- Subsequent registrations may be authenticated
- 3GPP mandates that UA registers before initiating services
 - One reason for this is that UA can be authenticated before session set-up to reduce session set-up time
- IMS public ids (SIP URIs) are not authenticated directly but the network checks that the public user identity is associated to the private id during registration
Re-authentication

- Re-authentication policy
 - User should not be able to incur high amount of charges between two authentications
 - Avoid unnecessary authentications of users that have remained largely inactive
- Network may ask UA to re-register in order to force a re-authentication
 - The triggers may include charging thresholds, number of events, session duration, etc.
WLAN interworking in 3GPP

- WLAN access zone can be connected to cellular core network
- Security for
 - WLAN access to Internet connectivity (scenario 2)
 - WLAN access to 3GPP PS domain services (scenario 3)
WLAN interworking – non-roaming case

Source: 3GPP TS 33.234
Scenario 2 security

- Authentication methods
 - between WLAN-UE and 3GPP AAA server
 - based on EAP
 - AAA fetches authentication vectors from HSS using DIAMETER (Wx interface)
 - SIM: based on GSM AKA and network authentication (eap-sim)
 - USIM: based on UMTS AKA (eap-aka)
EAP

- Extensible Authentication Protocol (EAP) is a general protocol framework that supports
 - multiple authentication mechanisms
 - allows a back-end server to implement the actual mechanism
 - authenticator simply passes authentication signaling through
- EAP was initially designed for use with PPP network access
 - But has been adapted by for many types of access authentication
 - WLAN (IEEE 802.1X), Bluetooth, ...
- EAP consists of several Request/Response pairs; Requests are sent by network
WLAN-3GPP interworking with EAP-SIM/EAP-AKA

- **EAP-SIM**
 - Internet draft
 - Describes how GSM authentication and key agreement protocol can be done in EAP
 - Additionally enhances GSM AKA with mutual entity authentication based on derived key K_c
 - Utilizes a bundle (at least two) of GSM triplets ($RAND, SRES, K_c$) in one run of the entity authentication → network authentication is based on (at least) 128-bit secret

- **EAP-AKA**
 - Internet draft
 - Describes how UMTS AKA can be done in EAP
Scenario 3 security

- IPsec tunnel established between UE and PDG
- Current status
 - IKEv2 used to establish IPsec SAs
 - EAP methods integrated into IKEv2 for client authentication
 - SIM: based on GSM AKA and network authentication (eap-sim)
 - USIM: based on UMTS AKA (eap-aka)
 - Server authentication based on PDG certificates
Generic Authentication Architecture (GAA)

- GAA consists of three parts:
 - **TS 33.220 Generic Bootstrapping Architecture (GBA)** offers generic authentication capability for various applications based on shared secret. Subscriber authentication in GBA is based on HTTP Digest AKA [RFC 3310].
 - **TS 33.221 Support of subscriber certificates**: PKI Portal issues subscriber certificates for UEs and delivers an operator CA certificates. The issuing procedure is secured by using shared keys from GBA.
 - **TS 33.222 Access to Network Application Function using HTTPS** will also be based on GBA.

Figure from 3GPP TR 33.919
GBA: Generic Bootstrapping

- Bootstrapping Server Function (BSF) and the UE shall mutually authenticate using the AKA protocol, and agree on session keys that are afterwards applied between UE and an operator-controlled Network Application Function (NAF).
- After the bootstrapping, the UE and NAF can run some application-specific protocol where the authentication / encryption of messages will be based on those session keys generated during the mutual authentication between UE and BSF.

- Zh and Zn are based on DIAMETER
- Ub uses HTTP Digest AKA
- Ua is application-specific
GBA_U

- GBA establishes session keys between the ME and the NAF
- An enhanced version called GBA_U allows session keys to be established between UICC and NAF
 - The session keys are not revealed outside the UICC
 - The application-specific NAF protocol is implemented on the UICC
 - This enhancement offers a higher level of security which is needed for certain applications like MBMS
Application of GBA: Presence service

Source: 3GPP TS 23.141
Application of GBA: Presence service

No Proxy

UE \[\longrightarrow\] Ut (HTTP) \[\longrightarrow\] Presence List Server (NAF) \[\longrightarrow\] TLS

Use of an Authentication Proxy

UE \[\longrightarrow\] Ut (HTTP) \[\longrightarrow\] Authentication Proxy (NAF) \[\longrightarrow\] Presence List Server

Source: 3GPP TS 33.141
Use of GBA for presence list management

- TLS used to secure communications between the UE and the list management server
- GBA provides session keys between UE and list management server (acting as a NAF)
- TLS may actually be terminated in an authentication proxy
 - in this case the authentication proxy acts as the NAF
- Exact way to use session keys to establish the TLS tunnel is still open
 - e.g. shared key TLS
HTTP-based services

- Security mechanisms for Presence list management should also be applicable to other HTTP-based services
 - General purpose architecture for securing HTTP-based services provided in TS 33.222
 - Presence security specification (TS 33.141) aligned with TS 33.222
Use of GBA / GBA_U for MBMS key management

- GBA provides session keys between UE and Broadcast/Multicast Service Centre (BM-SC) (acting as an NAF)
- Session keys are used to provide authentication between UE and BM-SC
- Session keys also used to encrypt the MBMS group keys in transit between the BM-SC and the UEs
- GBA_U provides session keys between UICC and BM-SC so that MBMS group keys can be provisioned directly to the UICC for enhanced security