3GPP TSG SA WG3 Security — S3#31
S3-030732
18 – 21 November 2003

Munich, Germany

Source:

Nokia
Title:
Using shared key TLS with NAFs
Document for:
Discussion and Decision

Agenda Item:
TBD
1. Status report of the shared-key Internet-Draft

The I-D “Use of Shared Keys in the TLS Protocol” has been developed a new version [1] in October 2003. It is attached to this discussion paper for information of SA3 group. So far there is no security hole identified in IETF TLS WG mail discussion. There is IETF meeting in week 46 and the progress is to be reported if ever possible.

This paper is likely to proceed fast towards RFC status since it became TLS working group draft (i.e., not a personal draft) during last summer.

11.
Status report of the shared-key Internet-Draft

12.
Shared key TLS usage in GAA

12.1
The handshaking procedure

22.2
Negotiation of TLS handshaking

32.3
Similarity with the TLS 1.0 specification session resumption

33.
The benefit of Shared-Key TLS compared to previous work assumption

44.
Implementation consideration to terminal and server

55.
How to handle the name-based virtual hosts

56.
Conclusion

67.
Reference

6Annex: AP using TLS with shared secrets

2. Shared key TLS usage in GAA

2.1 The handshaking procedure

The current shared key TLS draft is informational explaining how the session ID and master key are derived. Figure 1 depicts the message chart of the shared key TLS in GAA environment.

Figure 1. Shared key TLS usage in GAA.
When UE wants to mutually authenticate towards an application server (NAF) it first runs the protocol A with BSF resulting to both having established common TID and bootstrapped shared secret key material.

(1) UE derives a master key from the shared bootstrapped key material, and inserts it and TID (as the session ID) to the TLS session cache.

(2) UE sends ClientHello message with TID as the session ID to the NAF.

(3) NAF’s TLS implementation queries for the TID from the “active” TLS session cache.

(4) If “active” TLS session cache does not find the TID from the local cache, it retrieves the master key from BSF using protocol D.

(5) Master key is retrieved from BSF to local cache.

(6) “Active” TLS session cache return master key to the NAF’s TLS implementation.

(7) ServerHello, ChangeCipherSpec, and Finished messages are sent to UE.

(8) UE sends ChangeCipherSpec and Finished message to NAF to complete the TLS handshake.

(9) Shared key based TLS tunnel is established.

Note: TID is the identifier of a bootstrapping procedure. It could be replace with a ‘session identifier’ which identifies the unique association of [TID, UE, NAF]. Discussion in section 5 gives further detail regarding to the name of NAF.

2.2 Negotiation of TLS handshaking

The selection between shared key TLS and full TLS handshake is possible if the server implementation is based on TLS 1.0 [2], i.e. it contains already the certificate handshaking support. Or if the shared-key was corrupted so that server would like to require full handshaking and also the client certificate would be used for authentication as specified in TLS 1.0. In this case, the server would simply skip step 3-6, and sends its own certificate as well as the (client) Certificate Request in step 7 of Figure 1. A TLS 1.0 compatible client will either continue if it supports a client certificate or abort the session. Note this is standard TLS behaviour.

Note that, this section suggests how the TLS 1.0 and shared-key TLS co-exist in one implementation, specifically that TLS standard behaviour is not affected by introducing shared-key TLS functionality. But it is not our intention to propose the standard TLS behaviour.

2.3 Similarity with the TLS 1.0 specification session resumption

TLS 1.0 baseline offers an optimized way of resuming TLS sessions. A server will generate a Session ID, and hand it to client in a successfully established TLS session for future connection. Server will store the Session_ID, timestamp and the pre-master key agreed during that successful session, into local database. Later on when client decides to re-connect to the TLS server, it may send the session ID in ClientHello message. Next,

1. Server side will look up the database indexed with the received Session_ID, retrieve the timestamp, and the pre-shared master key;

2. Based on the local policy and timestamp, the server will decide to resume the session or not.

i. If yes in step 2, the server will pick up the same ciphersuite. But with the different random numbers for the new session, the both sides will derive common session keys for new connection.

ii. If no in step 2, the server will reject, and request normal handshaking.

The shared-key TLS acts the same manner with the resumption of baseline of TLS 1.0 as described above.

3. The benefit of Shared-Key TLS compared to previous work assumption

Based on the current knowledge using shared key TLS between UE and NAF seems to be the most promising way forward. This approach uses native AKA mutual authentication, and thus server certificates provided by external infrastructures are not needed. Also this gives wide protection against various MitM attacks. For example, it would not be possible for an attacker to masquerade as the server towards an UE, since it would not be able to find out the TLS session key. It is analysed in more detail of the major benefits of shared/key TLS.

1. Dismiss many certificate related issues, e.g. dependence on non-cellular CAs issuing these server certificates, the PKI required for certificate verification, server certificate delivery to the terminal.

The previous work assumption for doing server authentication in TLS is by using server certificates. This requires server certificates to be issued by a trusted

authority. If 3GPP takes this approach, either mobile operators have to set up their own PKI or they become dependent on commercial CAs.

2. MitM attack is resolved. Currently we don’t have a solution for this issue in detail.

Major advantage provided by the shared key TLS draft is that it gives wide protection against various MitM attacks (including the Tunneling attack) as the TLS session keys are based on AKA. The authentication is achieved by leveraging the mutual authentication built into AKA, which is done during protocol A.

3. Public-key calculation in server side is unnecessary for pre-master key delivery. Resource and computation time are saved.
There are 2 types of handshaking in TLS 1.0 baseline specification [2], full handshaking and abbreviated handshaking. Both of them require server certificate to be sent in Server Hello message. The public-key in certificate is then used by client to encrypt the pre-master in next message ChangeCipherSpec. Server side then decrypts the pre-master, so as to further derive TLS session keys. Finally the both sides send MAC of previous messages in Finnished messages (step 7 and 8 in Figure 1), to protect against any malicious tampering of the handshaking.

In Shared-key TLS scenario, based on the TID value the server can retrieve the pre-master from BSF or pre-stored in local database (step 3-6 in Figure 1). Therefore logically there is no need to deliver server’s certificate for pre-master key delivery.

4. Server authentication with higher efficiency
In TLS 1.0 [2], the server needs to provide own certificate, where the server identity is shown. More importantly, the server must be able to decrypt the pre-master key and use the derived TLS session key for MAC, thus proving its procession of the private key and the server identity it claimed. In contrast, in shared-key TLS scenario, the server can authenticate itself by the shared secret instead of certificate in handshaking phase. This is done by MAC value for proving the possession of keys.

Note that, the association between server identity and the pre-master key is provided by certificate and public-key calculation. In 3GPP network, this is achievable by GBA infrastructure, since the BSF knows the NAFs identity and the derived keys for each NAF (Ks_NAF). In fact the key sent from the BSF to the NAF should be NAF-specific so as to guarantee the traffic towards to each NAF is not able to eavesdropped by any other NAF. The GBA can e.g. derive shared pre-master key from the TLS server identity. If a shared-key TLS server is capable of responding with the specific key for it, it guarantees sufficiently that server is the expect party.

These different approaches reflect different business model. In 3GPP solution, there is always the specific server in operator network (or enabled by operator’s network) that is commonly known by 3GPP operator and end user; while TLS 1.0 serves for Internet service, thus the server may be unknown to the end user.

5. No need to authenticate client in the HTTP layer, thus less round trip required
The previous working assumption relies client authentication in application layer. Since the session keys are generated from randoms and pre-master that is also a random, there is no link between the TLS session keys and the client identity.

In shared-key TLS procedure, client can also prove its possession of shared-key, thus convince the server about client’s validity. It is highlighted here, that the shared-key are derived from bootstrapped keys and user identity (or perhaps TID), thus it brings stronger bind between the TLS and client identity than previous working assumption.

6. The client key update can be acknowledged in handshaking phase, which is earlier than application layer in previous working assumption. This behaviour exists in the standard TLS, when the Server does not want to resume a session, it sends the alert message stating that session (and the key associated) is too old.

7. The termination point of TLS

As a requirement GBA infrastructure must guarantee that UE and BSF derive the shared-key based on a server identity common for them, thus guarantee the shared key is common for UE and NAF. As long as the NAF gets the proper session key from BSF, the TLS connection can always be initiated. In other words, usage of shared-key TLS does not have dependency on the end-point of the TLS, whether it’s re-used by group of NAFs or uniquely for a NAF, both scenarios can utilize shared-key TLS protocol. This was pointed out by Alcatel in their contribution S3-030576 already for SA3#30 Povoa meeting.

In previous working assumption where server authenticates itself by certificate, verification of the server identity is a problem if the end point of TLS is transparent to client. But in the shared-key TLS certificate is not involved, thus the identity ambiguity in server certificate goes away.

Conclusion: Independent of the termination point of the shared-key TLS in GBA infrastructure, it is comparatively better than the solution based on server certificate.
4. Implementation consideration to terminal and server
From discussion in section 2, we see the compatibility of shared-key TLS with TLS 1.0. It is only an addition of TLS implementations with the following functions:

1. Server side needs to have a capability to insert a TLS session ID and master secret to the TLS session cache. This is an API required in both sides. Note a 3GPP NAF i.e. the TLS server, to enable Ua interface authentication, it must be able to talk to BSF (protocol D in GBA) to retrieve secret shared by UE and BSF, as well as UE related information, regardless of the TLS version. The structure is shown in red part in Figure 2. Note, it is the GBA infrastructure requires dependency between the protocol state machines of NAF protocol over Ua interface and protocol D. In other words, the dependency nevertheless exists, when the shared-key TLS is used.

[image: image1.wmf]

BSF

TLS standard

stack

Porotocol D

TLS

standard

database

NAF

Bootstrapping function (API)

-

 Retrive shared

-

secre

t Ks_NAF

from BSF

-

 Handling of TLS

User ID

 and

Ks_NAF

Figure 2: NAF TLS implementation

Obviously any existing TLS implementation does not support the 3GPP specific function (the read part). It is in 3GPP vendor’s arena, thus it is not a problem to include session ID and key function.

Note the standard TLS 1.0 has already the cache implementation of session ID and master keys, adding similar function should not be a problem here.

2. Similar scenario is required to client side, thus no web browser would support the 3GPP specific function.
5. How to handle the name-based virtual hosts
Virtual hosts are the server applications that are often co-exist on a server machine. Basically it should not be a problem, as long as the UE and BSF derive the shared-key based on a server identity common for them, it can guarantee the shared key are common for UE and NAF (retrieved from BSF). Certainly it is preferable to use server discovery scheme, as the identity of NAF, such as the DNS name.

The UE can contain the NAF name in the session identifier when contacting the NAF. While the NAF contacting the BSF for requesting Ks_NAF, the BSF will also get the information what is the intended NAF identity encapsulated in the session identifier, so as to verify from the sender of the key requestion. There is a companion contribution from Nokia, explaining how to generate the session identifier in detail.

6. Conclusion

This contribution described a way of using shared-key TLS between UE and NAF. It provides an attractive way to use GBA based shared secret within GAA.

It is proposed to make a decision to give a priority for the GBA supported shared-key TLS over the other possible solution, i.e. the external CA supported server certificate authentication and the PKI required for certificate verification. Since the Rel-6 time pressure is increasing, it is proposed to make a decision now based on stage 2 works available.
If the meeting endorses the shared-key TLS as the working assumption, then it is further proposed to add this work into dependency list of IETF as done for R5 work.

7. Reference

[1]

Use of Shared Keys in the TLS Protocol, P.Gutmann. draft-ietf-tls-sharedkeys-02, I-D. October 2003.

[2]

The TLS Protocol – Version 1.0, Dierks, T., and C. Allen, RFC 2246, January 1999.
Annex: AP using TLS with shared secrets

This section describes how GAA can use AP using shared key TLS. In this scenario, the BSF and AP‑NAF can be either co-located or separate network elements. Figure 3 depicts the latter case.

[image: image2.wmf]BSF

UE

HSS

AKA

http based network services

Presence

https (shared key TLS)

Other network services

NAF

(

Subsriber

cert.s)

AS

-

X

NAF

(HTTP Auth

Proxy)

NAF

Fetching shared secret

via protocol

D

Client

authentication

via protocol

B,

using

shared secret

security

of links

is

user

-

independent

Protocol A

Protocol C

Figure 3. AP‑NAF using shared key TLS.
When the UE wants to access one of the application servers, which are attached to the AP‑NAF, on the right hand side of the figure, then the sequence of events is as follows:

1) the UE starts HTTP Digest AKA
 (rfc3310) or HTTP Digest AKAv21 (outside a TLS tunnel) with the BSF. The BSF may contact the HSS to fetch authentication vectors (protocol C). After step 1), the UE and the BSF share a secret key and transaction ID (TID), cf. TS SSC, section 4.3.1.

2) The UE sends an http request towards an application server. The http request is intercepted by the AP‑NAF. The AP‑NAF instructs the UE to upgrade the HTTP connection to TLS/1.0 (see [2])

3) The UE establishes TLS tunnel with the AP‑NAF to perform client authentication using the shared key (see [2]). In the process, the AP fetches the agreed key from the BSF (protocol D), as described in TS SSC, section 4.3.2.

4) The UE runs the application protocol with the application server through the AP‑NAF.

When UE wants to access the application servers on the left hand side of the figure, which are not attached to the AP‑NAF, and if shared key TLS is used between the UE and a NAF, the sequence of events is similar to those above:

1) the UE starts HTTP Digest AKA1 (rfc3310) or HTTP Digest AKAv21 (outside a TLS tunnel) with the BSF. The BSF may contact the HSS to fetch authentication vectors (protocol C). After step 1), the UE and the BSF share a secret key and transaction ID (TID), cf. TS SSC, section 4.3.1.

2) The UE sends a request (e.g. an http request) towards the application server (NAF). The NAF instructs the UE to upgrade the HTTP connection TLS/1.0 (see [2]).

3) The UE establishes TLS tunnel with the NAF to perform client authentication using the shared key TLS (see [2]).

4) In the process, the NAF fetches the agreed key from the BSF (protocol D), as described in TS SSC, section 4.3.2.

5) The UE runs the application protocol with the NAF.
(6) Session cache returns master key to TLS implementation

(3) TLS implementation queries for TID in the “active” session cache, cache retrieves the master key from BSF using protocol D.

(1) Derive the master key from shared secret, and insert it and TID to session cache

master key (5)

(4) TID

NAF

Protocol A

TLS connection established (9)

(8) ChangeCipherSpec, Finished

ServerHello, ChangeCipherSpec, Finished (7)

(2) ClientHello, TID

BSF

UE

� With HTTP Digest AKA or HTTP Digest AKAv2 need to have the added functionality of protocol A: (1) transport the identity of the user in the first HTTP request and (2) transport the TID in the last HTTP response.

_1129708852.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

TLS standard stack

Bootstrapping function (API)

- Retrive shared-secret Ks_NAF from BSF

- Handling of TLS User ID and Ks_NAF

TLS standard database

NAF

BSF

Porotocol D

_935227290.doc

_1125738607.ppt

BSF

UE

HSS

AKA

http based network services

Presence

https (shared key TLS)

Other network services

NAF

(Subsriber cert.s)

AS-X

NAF

(HTTP Auth Proxy)

NAF

Fetching shared secret

via protocol D

Client authentication

via protocol B, using

shared secret

security of links is

user-independent

Protocol A

Protocol C

