Page 1



3GPP TSG-SA2 Meeting #28 
S2-023286

Bangkok, Thailand, 11-15 November, 2002

Title:
Policy-based control of DiffServ: Issue 1
Source:
Nortel Networks

Agenda Item:
9

Document for:
Discussion & agreement

1
Introduction

SA2#27 identified three key issues with the proposed Service Based Local Policy controlled Diffserv functions at the GGSN. These were communicated to CN3 in S2-023131.

This contibution considers the first of these issues, described as follows in the liaison to CN3: 

“Issue 1:
The UE must have sufficient information about the policing functions being carried out in the GGSN to ensure that the flows it generates comply with the policing functions installed by the network – assuming the UE is well-behaved.

There were differing opinions about whether it would be possible to derive this information from the SDP and whether a separate policing function in the UE would be required to ensure conformance.”

2
Discussion

The objective of the policing functions of Service Based Local Policy is to ensure that the application uses only the resources which have been authorised for a particular flow. The network has only the SDP from which to derive the ‘Authorised QoS’ for a given flow.

It has been suggested that some feedback is required to the UE to inform it of the authorised resources. It has been suggested that this information could then be used in one of two ways:

1) To configure a conditioning function in the UE which would condition uplink traffic to the authorised QoS, or
2) To cause the application to modify its behaviour, to keep the flows within the authorised QoS

Underlying these suggestions is an assumption that, without this feedback, there may be times when the application exceeds the authorised QoS and that it would be inappropriate to drop packets if this happens.

We firstly examine this assumption, which is basically about the accuracy of the ‘Authorised QoS’ derived by the network from the SDP.

2.1
Accuracy of Authorised QoS

2.1.1
Constant bit-rate applications:

In these cases, the application generates a constant stream of fixed length packets. In general these will be generated at regular time intervals and so would pass a token bucket algorithm with bucket size equal to only a single packet length.

However, it is possible that packets arrive from the application at the UMTS BS with a certain amount of jitter.

We first consider that the application is required to operate effectively over a dedicated PDP Context. In this case a conditioner at the UE is conditioning packets based on a token bucket algorithm with bucket size equal to the maximum SDU size.

Based on the argument in Annex A to this contribution, we know that this conditioner operates by dropping packets which take the flow out of conformance with the token bucket.

It is therefore normal behaviour for packets to be dropped. The application will be designed to avoid exceeding the token bucket rate with this bucket size, or to be tolerant of such packet losses.

2.1.2
Real-time variable bit-rate applications:

In this case, the application specifies both a maximum and guaranteed bandwidth. The bandwidth specified in the SDP is the maximum. The ‘worst case’ for this discussion is when the application transmits constantly at the maximum bit-rate – i.e. when it behaves just like a constant bit-rate application. But then the considerations of the above discussion apply.

2.1.3
Interactive applications:

In these cases, the application is not expected to generate packets at any regular rate. The bandwidth specified by the application is a statement of the maximum bandwidth requirement – i.e. the application is indicating that it could operate acceptably over a particular fixed bandwidth pipe.

Interactive applications, by their nature, are prepared to trade data volume against packet delay. An interactive application expects that in the first instance, its packets will be queued in the network, rather than discarded.

Based on the case where the application operates over a dedicated PDP Context, the application will assume that the conditioner will queue packets which exceed the token bucket meter.

However, the application must assume that the capacity of the queue is limited. At some point, packets may be lost. Based on packet delays, and packet loss rates, interactive applications automatically adjust their instantaneous transmit rate to fit the available bandwidth.

In these cases, it would be appropriate to allow a very large token bucket size. Although dropping packets is an acceptable action, it leads to inefficiency as the application re-transmits. So, it may also be appropriate to mark ‘out of profile’ packets to a lower DSCP, rather than dropping them. This would cause them to experience higher delay – in line with application expectations.

The exact policy applied to interactive applications (token bucket size, DSCP) would be a matter of operator policy, and in many cases it may not be appropriate to apply policing at all.

2.1.4 
Conclusion

From the above, it can be seen that the claimed assumption does not hold, either for conversational, streaming or interactive applications.

In the conversational or streaming case it is reasonable to assume that traffic will not exceed a token bucket rate with a bucket size equal to, say, the maximum SDU size. It could also be investigated whether tighter controls could be applied by means of a two-rate token bucket (average & peak rate). This might allow for peaks (such as those generated by excessive jitter) whilst maintaining the average rate.

In the Interactive case it is appropriate to delay traffic that exceeds the application specified maximum bandwidth (by marking down the DSCP).

For completeness, we now consider the suggested UE conditioning functions:

2.2
Per-flow conditioning at the UE

It has been suggested that there would be a need for a per-flow conditioning function at the UE to ensure conformance to the policies applied at the GGSN.

We imagine that such a function were defined, and consider an example application that is not well-behaved i.e. whilst it has declared that the session is a 16kbit/s audio session, in fact it is attempting to send a 64kbit/s stream, ‘stealing’ bandwidth from other (dormant) applications sharing the PDP Context.

In this case the UE conditioning function – if operating correctly - would find itself discarding packets. However, the application has been deliberately modified to try and defraud the network. Why do we expect the conditioning functions to operate correctly in this case – surely they would have been modified as well ??

So, instead, we suppose that the application is well-behaved. As noted above, for real-time applications it is theoretically possible, though rare and unexpected, that the application injects so much jitter into the packet generation interval, that it exceeds the token bucket rate. As discussed in Annex A, the conditioning function must discard the out-of-profile packet.

Without the UE conditioning function, then the packet would be sent, but then discarded at the GGSN based on the Diffserv conditioner. The UE conditioning function therefore succeeds in preventing the redundant transfer of a packet on the radio, but it does not prevent the loss of the packet to the application. It is an optimisation, not an essential feature.

Since the case which is being optimised is considered to be rare (noone would design an application to deliberately generate packets in a way which is known to cause them to be lost!), it is not a very important optimisation either.

2.3
Application adaption based on policy

Finally we consider the possibility that the application might adjust its behaviour based on the policy determined by the PCF.

If support for this adaption could be mandated in applications, this would provide for much greater freedom for operators to determine the policy at the PCF. Any ‘reasonable’ policy could be applied and the application could be expected to do its best to operate within those constraints.

Without such adaption, policies must be carefully chosen based only on the aspects of application behaviour which can be derived from the SDP. This gives less flexibility in the policies which can be chosen, and in particular in some cases a significant amount of leeway needs to be left.

However, these less flexible policies are quite sufficient to meet the objective of ensuring that application flows are broadly kept to the bandwidth/QoS which is appropriate for the application. This in turn enables service-based charging.

3
Conclusion

From the above we conclude as follows:

For real-time applications, it is safe to assume that a well-behaved application will generate packet streams conformant to the bandwidth in the SDP, based on a suitably large token bucket size (at most the maximum SDU size, since this is what is used in the case of a dedicated PDP Context).

We base this conclusion on the assumption that the application can operate effectively over a dedicated PDP Context (in which case, in particular, there is a token bucket meter with token bucket size equal to the Maximum SDU size).

Discarding packets which are non-conformant is the correct action, rather than queuing them.

For Interactive applications, it is reasonable to re-mark packets which do not conform to the SDP bandwidth to a lower DSCP. Queuing or discarding packets in this case will signal to the application to reduce its instantaneous bandwidth. The choice is a matter of operator policy.

New per-flow conditioning functions at the UE represent an optimisation, but for a very rare case.

4
Proposal

It is proposed to clarify the following points in 23.207:

· Diffserv policy should be limited to features of the application which can be derived from the SDP, along with the assumption that the application can operate successfully over a dedicated PDP Context (where, in particular, token bucket size = Maximum SDU size).

· Policies which drop packets are not recommended for Interactive Traffic, since they result in inefficient application re-transmits. Policies which mark down out-of-profile traffic are recommended

If these points are agreed in principle, then Nortel will bring CRs for consideration at the next meeting.

Annex A: UMTS BS conditioning function

We consider the case in which a constant bit-rate application is using a dedicated PDP Context. We assume that the full token bucket size can by physically transferred in one packet interval and consider an application which injects so much jitter into the packet arrival that it exceeds the token bucket for the uplink.

The conditioner has a choice of queueing or discarding the out-of-profile packet.

We discover that queuing these packets results in a permant increase in the packet delay. This is illustrated in the following diagram


[image: image1.wmf]Packet intervals

1

2

3

4

5

6

7

8

•

Token bucket size = 3 packet sizes

•

Application generates 1 packet each packet interval

•

Application injects enough jitter (3 packet intervals) to exceed

token bucket

•

UE UMTS BS manager queues packets which cannot be sent

Packet

P1

P2

P3 P4 P5 P6

P7

P8

generation

Token bucket size

3

3

3

3

3

3

1

1

(before sending)

Packets sent

P1

P2

P3 P4 P5

P6

P7


The single defining characteristic of Conversational/Streaming bearers is that bounded delay is more important than avoiding packet loss (otherwise we would use re-transmission). The above therefore shows that queueing packets at the UE is in fact the wrong choice, and packets should be dropped instead in order to maintain conformance to the policy.

Page 1

_1097487773.ppt






Packet intervals		1	2	3	4	5	6	7	8

		Token bucket size = 3 packet sizes

		Application generates 1 packet each packet interval

		Application injects enough jitter (3 packet intervals) to exceed token bucket

		UE UMTS BS manager queues packets which cannot be sent



Packet		P1	P2				P3 P4 P5 P6	P7	P8

generation



Token bucket size	3	3	3	3	3	3	1	1

(before sending)



Packets sent		P1	P2				P3 P4 P5	P6	P7








