 
67 

3G TS 23.127 version 3.0.0


3GPP Meeting S2#13
Document
S2-000963

Berlin, Germany, 22-26 May 2000

e.g. for 3GPP use the format  TP-99xxx 

or for SMG, use the format  P-99-xxx







CHANGE REQUEST
Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.




23.127
CR
003R1
Current Version:
3.0.0








GSM (AA.BB) or 3G (AA.BBB) specification number (

( CR number as allocated by MCC support team



For submission to: 
SA#8
for approval
x

strategic

(for SMG

list expected approval meeting # here (
for information


non-strategic

use only)





Form: CR cover sheet, version 2 for 3GPP and SMG        The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc



Proposed change affects:
(U)SIM

ME

UTRAN / Radio

Core Network
x

(at least one should be marked with an X)



Source:
Ericsson, Siemens
Date: 
22.5.2000



Subject:
Alignment with stage 3 (TS 29.198)



Work item:
VHE/OSA



Category: 
F
Correction
X
Release: 
Phase 2



A
Corresponds to a correction in an earlier release


Release 96


(only one category 
B
Addition of feature


Release 97


shall be marked
C
Functional modification of feature


Release 98


with an X)
D
Editorial modification


Release 99
x





Release 00




Reason for 
change:

Mis-alignments between stage 2 and stage 3 specifications were identified, some of which requiring corrections in stage 2. These corrections concern methods and parameters in the OSA interfaces.

A particular case is the re-introduction of OAM and Heartbeat Management framework SCFs, which were part of earlier versions of the specification, but were accidentally removed when it was raised to 3.0.0.



Clauses affected:




Other specs
Other 3G core specifications

(  List of CRs:


affected:
Other GSM core specifications

(  List of CRs:



MS test specifications

(  List of CRs:



BSS test specifications

(  List of CRs:



O&M specifications

(  List of CRs:




Other 
comments:



[image: image1.wmf]help.doc

  <--------- double-click here for help and instructions on how to create a CR.

6.2 Discovery

The discovery SCF  consists of a single interface class. Before a network SCF can be discovered, the client application must know what “types” of SCFs are supported by the Framework and what “properties” are applicable to each SCF  type. The listServiceType() method returns a list of all “SCF types” that are currently supported by the framework and the “describeServiceType()” returns a description of each SCF type. The description of SCF type includes the “SCF-specific properties” that are applicable to each SCF type. Then the client application can discover a specific set of registered SCFs that belong to a given type and possess the desired “property values”, using the “discoverService() method. 

Once the HE-VASP finds out the desired set of SCFs supported by the network, it subscribes (a sub-set of) these SCFs using the Subscription framework SCF. The HE-VASP (or the client applications in its domain) can find out the set of SCFs available to it (i.e., the SCFs that it can use) by invoking “listSubscriberServices()”.

The discovery SCF is invoked by the HE-VASP or client applications. Its methods are described below.

Method
discoverService ()

The discoverService operation is the means by which a client application is able to obtain the IDs of  the SCFs that meet its requirements. The client application passes in a list of desired properties to describe the SCF it is looking for, in the form attribute/value pairs for the properties. The client application also specifies the maximum number of matched responses it is willing to accept. The framework must not return more matches than the specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the specified maximum. The discoverService() operation returns a serviceID/Property pair list for those SCFs that match the desired property list that the client application provided.

Direction
Application to network

Parameters
serviceTypeName 

The “ServiceTypeName” parameter conveys the required SCF type. It is key to the central purpose of “SCF trading”. By stating an SCF type, the importer implies the SCF type and a domain of discourse for talking about properties of SCF.

The framework may return an SCF of a subtype of the “type” requested. An SCF sub-type can be described by the properties of its supertypes. 

desiredPropertyList 

The “desiredPropertyList”parameter is a list of property name and property value pairs of properties that the discovered set of SCFs should satisfy. These properties deal with the non-functional and non-computational aspects of the desired SCF. The property values in the desired property list must be logically interpreted as “minimum”, “maximum”, etc. by the framework.  

max 

The “max” parameter states the maximum number of SCFs that are to be returned in the “ServiceList” result.

Returns
serviceList : 

This parameter gives a list of matching SCFs. Each SCF is characterised by an SCF ID and a list of property name and property value pairs associated with the SCF.

Errors
ILLEGAL_SERVICE_TYPE

Returned of the string representation of the “type” does not obey the rules for SCF type identifiers

UNKNOWN_SERVICE_TYPE

Returned if the “type” is correct syntactically but is not recognised as an SCF type within the Framework

Method
listServiceTypes ()
This operation returns the names of all SCF types which are in the repository. The details of the SCF types can then be obtained using the describeServiceType() method. 

Direction
Application to network

Parameters


Returns
listTypes 

The names of the requested SCF types.

Errors


Method
describeServiceType()

This operation lets the caller to obtain the details for a particular SCF type.

Direction
Application to network

Parameters
name 

The name of the SCF type to be described

Returns
serviceTypeDescription

The description of the specified SCF type. The description provides information about:

· the property names associated with the SCF,

· the corresponding property value types, 

· the corresponding property mode (mandatory or read only) associated with each SCF property, 

· the names of the super types of this type, and 

· whether the type is currently enabled or disabled.

Errors
ILLEGAL_SERVICE_TYPE

Returned of the string representation of the “type” does not obey the rules for SCF type identifiers

UNKNOWN_SERVICE_TYPE

Returned if the “type” is correct syntactically but is not recognised as an SCF type within the Framework

Method
listSubscribedServices ()

Returns a  list of SCFs so far subscribed by the HE-VASP. The HE-VASP  (or the client applications in the HE-VASP domain) can obtain a list of subscribed SCFs that they are allowed to access. 

Direction
Application to network

Parameters


Returns
serviceList 

Returns a list of IDs of the SCFs subscribed by the HE-VASP. 

Errors


6.3 Integrity Management SCFs

6.3.1 Load Manager

The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load balancing policy. The separation of the load balancing mechanism and load balancing policy ensures the flexibility of the load balancing functionality. The load balancing policy identifies what load balancing rules the framework should follow for the specific client application. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other applications will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load balancing policy is related to the QoS level to which the application is subscribed. 

The Load Manager SCF consists of a single interface class. Most methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. 

The load management operations do not exchange callback interfaces as it is assumed that the client application has supplied its Load Management callback interface at the time it obtains the Framework’s Load Manager SCF, by use of the obtainInterfaceWithCallback operation on the OSA Access SCF.

Method
reportLoad()

The client application notifies the framework about its current load level (0,1, or 2) when the load level on the application has changed. 
At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the application is overloaded.  At level 2 load, the application is severly overloaded. 

Direction
Application to network

Parameters
requester 

Specifies the application interface for callbacks.

loadLevel 

Specifies the load level for which the application reported.

Returns


Errors


Method
enableLoadControl()

Upon detecting load condition change, (i.e. load level changing from 0 to 1, 0 to 2, 1 to 2 or 2 to 1, for the SCFs or framework which has been registered for load control), the framework enables load management activity at the client application based on the policy.

Direction
Network to application

Parameters
loadStatistics 

Specifies the new load statistics 

Returns


Errors


Method
disableLoadControl()

After load level of the framework or SCF which has been registered for load control moves back to normal, framework disables load control activity at the client application based on policy.

Direction
Network to application

Parameters
serviceIDs

Specifies the framework and SCFs for which the load has changed to normal.  The serviceIDs is null to specify the framework only.

Returns


Errors


Method
resumeNotification()

Resume the notification from an application for its load status after the detection of load level change at the framework and the evaluation of the load balancing policy. 

Direction
Network to application

Parameters


Returns


Errors


Method
suspendNotification()

Suspend the notification from an application for its load status after the detection of load level change at the framework and the evaluation of the load balancing policy. 

Direction
Network to application

Parameters


Returns


Errors


Method
queryLoadReq ()

The client application requests load statistic records for the framework and specified SCFs. 

Direction
Application to Network

Parameters
requester 

Specifies the application interface for callbacks.

serviceIDs 

Specifies the framework, SCFs or applications for which the load statistics shall be reported. The serviceIDs is null for framework load statistics only.

timeInterval 

Specifies the time interval within which the load statistics are generated.

Returns


Errors


Method
queryLoadRes()

 Returns load statistics to the application which requested the information.

Direction
Network to application

Parameters
loadStatistics 

Specifies the framework-supplied load statistics.

Returns


Errors


Method
queryLoadErr()

Returns an error code to the application that requested load statistics.

Direction
Network to application

Parameters
loadStatisticsError

Specifies the framework-supplied error code.

Returns


Errors


Method
queryAppLoadReq()

The framework requests for load statistic records produced by a specified application. 

Direction
Network to application

Parameters
serviceIDs 

Specifies the SCFs or applications for which the load statistics shall be reported.

timeInterval 

Specifies the time interval within which the load statistics are generated.

Returns


Errors


Method
queryAppLoadRes ()

Report load statistics back to the framework that requested the information.

Direction
Application to network

Parameters
loadStatistics

Specifies the load statistics in the application.

Returns


Errors


Method
queryAppLoadErr()

Return an error response to the framework that requested the application’s load statistics information.

Direction
Application to network

Parameters
loadStatisticsError

Specifies the error code associated with the failed attempt to retrieve the application’s load statistics.

Returns


Errors


Method
registerLoadController ()

Register the client application for load management under various load conditions. 

Direction
Application to network

Parameters
requester 

Specifies the application interface for callbacks.

serviceIDs 

Specifies the framework and SCFs to be registered for load control.  To register for framework load control only, the serviceIDs is null.

Returns


Errors


Method
unregisterLoadController ()

Unregister the client application for load management.

Direction
Application to network

Parameters
requester 

Specifies the application interface for callbacks.

serviceIDs 

Specifies the framework or SCFs to be unregistered for load control.

Returns


Errors


Method
resumeNotification ()

Resume load management notifications to the application for the framework and specified SCFs after their load condition changes.

Direction
Application to network

Parameters
serviceIDs

Specifies the framework and SCFs for which notifications are to be resumed. The serviceIDs is null to resume notifications for the framework only.

Returns


Errors


Method
suspendNotification()

Suspend load management notifications to the application for the framework and specified SCFs, while the application handles a temporary load condition. 

Direction
Application to network

Parameters
serviceIDs

Specifies the framework and SCFs for which notifications are to be suspended. The serviceIDs is null to suspend notifications for the framework only.

Returns


Errors


6.3.2 Fault Manager

This SCF is used by the application to inform the framework of events which affect the integrity of the framework and SCFs, and to request information about the integrity of the system.

It consists of a single interface class, with the following methods.

Method
activityTestReq()

This method may be used by the application to test that the framework or an SCF is operational. On receipt of this request, the framework must carry out a test on the specified SCF or the framework itself to check that it is operating correctly and report the test result.

Direction
Application to network

Parameters
activityTestID 

The identifier provided by the client application to correlate the response (when it arrives) with this request.

svcID 

This parameter identifies which SCF the client application is requesting the activity test to be done for. A null value denotes that the activity test is being requested for the framework.

appID 

This parameter identifies which client application is requesting the activity test, and therefore which application to send the result to.

Returns


Errors


Method
activityTestRes()

The framework returns the result of the activity test in this method, along with a test identifier to allow correlation of result to request within the client application.

Direction
Network to application

Parameters
activityTestID 

The identifier provided by the client (in the request), to correlate this response with the original request.

activityTestResult 

The result of the activity test.

Returns


Errors


Method
appActivityTestReq ()

This method is invoked by the framework to request that the client application carries out an activity test to check that is it operating correctly. 

Direction
Network to application

Parameters
activityTestID 

The identifier provided by the client (in the request), to correlate this response with the original request.

Returns


Errors


Method
appActivityTestRes ()

This method is used by the client application to return the result of a previously requested activity test.

Direction
Application to network

Parameters
activityTestID

The identifier is used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult

The result of the activity test.

Returns


Errors


Method
fwFaultReportInd ()

This method is invoked by the framework to notify the client application of a failure within the framework. The client application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd). 

Direction
Network to application

Parameters
fault 

Specifies the fault that has been detected.

Returns


Errors


Method
fwFaultRecoveryInd ()

This method is invoked by the framework to notify the client application that a previously reported fault has been rectified. 

Direction
Network to application

Parameters
fault 

Specifies the fault from which the framework has recovered.

Returns


Errors


Method
svcUnavailableInd ()

This method is used by the client application to inform the framework that it can no longer use the indicated SCF (either due to a failure in the client application or in the SCF). On receipt of this request, the framework should take the appropriate corrective action. The framework assumes that the session between this client application and instance SCF is to be closed and updates its own records appropriately as well as attempting to inform the SCF instance and/or its administrator. If the client application then tries to continue the use of this session it should be returned an error.

Direction
Application to network

Parameters
serviceID 

The identity of the SCF which can no longer be used.

appID 

The identity of the application sending the indication.

Returns


Errors


Method
svcUnavailableInd ()

This method is used by the framework to inform the client application that it can no longer use the indicated SCF due to a failure in the SCF. On receipt of this request, the client application must act to reset its use of the specified SCF (using the normal mechanisms such as the discovery and authentication interfaces to stop use of this SCF instance and begin use of a different SCF instance).

Direction
Network to application

Parameters
serviceID 

The identity of the SCF which can no longer be used.

reason 

The reason why the SCF is no longer available.

Returns


Errors


Method
genFaultStatsRecordReq ()
This method is used by the application to solicit fault statistics from the framework. On receipt of this request, the framework must produce a fault statistics record, which is returned to the client application. The fault statistics record must contain information about faults relating to the SCFs specified in the serviceIDList parameter, during the specified period.

Direction
Application to Network

Parameters
timePeriod 

The period over which the fault statistics are to be generated. A null value leaves this to the discretion of the framework.

serviceIDList 

This parameter lists the SCFs that the application would like to have included in the general fault statistics record. If the application would like the framework fault statistics to be included it should include the NULL serviceID.

appID 

This parameter identifies which client application is requesting the statistics record, and therefore which application to send the record to.

Returns


Errors


Method
genFaultStatsRecordRes ()

This method is used by the framework to provide fault statistics to a client application in response to a genFaultStatsRecordReq. 

Direction
Network to application

Parameters
faultStatistics 

The fault statistics record.

serviceIDs
This parameter lists the SCFs that have been included in the general fault statistics record. The framework is denoted by the NULL serviceID.

6.3.3 Heartbeat Management

This SCF allows the initialisation of a heartbeat supervision of the client application. In case of SCF supervision, it is the framework's responsibility to check the health status of the respective SCF.

Since the OSA API is inherently synchronous, the heartbeats themselves are synchronous for efficiency reasons. 

The Heartbeat Management SCF consists of a two interface classes: Heartbeat Management and Heartbeat.

Heartbeat Management

Method
enableHeartBeat ()

With this method, the client application registers at the framework for heartbeat supervision of itself.

Direction
Application to network

Parameters
duration 

The duration in milliseconds between the heartbeats.

appInterface 

This parameter refers to the callback interface.

Returns
session 

Identifies the heartbeat session. In general, the application has only one session. In case of  SCF and framework supervision by the client application, the application may maintain more than one session.

Errors


Method
disableHeartBeat()

Allows the stop of the heartbeat supervision of the application.

Direction
Application to network

Parameters
session

Identifies the heartbeat session. 

Returns


Errors


Method
changeTimeperiod()

Allows the administrative change of the heartbeat period. 

Direction
Application to network

Parameters
session

Identifies the heartbeat session. In general, the application has only one session. 

duration

The time interval in milliseconds between the heartbeats.

Returns


Errors


Method
enableAppHeartBeat()

With this method, the framework registers at the client application for heartbeat supervision of itself.

Direction
Network to application

Parameters
duration 

The time interval in milliseconds between the heartbeats.

fwInterface 

This parameter refers to the callback interface.

session 

Identifies the heartbeat session.. 

Returns


Errors


Method
disableAppHeartBeat()

Allows the stop of the heartbeat supervision of the application.

Direction
Network to application

Parameters
session

Identifies the heartbeat session.

Returns


Errors


Method
changeTimeperiod()

Allows the administrative change of the heartbeat period. 

Direction
Network to application

Parameters
session

Identifies the heartbeat session. 

duration

The time interval in milliseconds between the heartbeats.

Returns


Errors


Heartbeat 

Method
send()

This is the method the client application uses in case it supervises the framework or an SCF. The sender must raise an exception if no result comes back after a certain, user-defined time.

Direction


Parameters
session 

Identifies the heartbeat session. In general, the application has only one session. 

Returns


Errors


Method
send()

This is the method the framework uses in case it supervises a client application. The sender must raise an exception if no result comes back after a certain, user-defined time.

Direction


Parameters
session 

Identifies the heartbeat session. 

Returns


Errors


6.3.4 OAM 

The OAM SCF is used to query the system date and time. The application and the framework can synchronise the date and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA API.

The OAM SCF consists of a unique interface class.

Method
systemDateTimeQuery()

This method is used to query the system date and time. The client application passes in its own date and time to the framework. The framework responds with the system date and time.

Direction
Application to network

Parameters
clientDateAndTime 

This is the date and time of the client application. 

Returns
systemDateAndTime 

This is the system date and time returned by the framework.

Errors
INVALID_DATE_TIME_FORMAT

Method
systemDateTimeQuery()

This method is used to query the system date and time. The framework passes in the system date and time to the client. The client responds with its own date and time.

Direction
Network to application

Parameters
systemDateAndTime 

This is the system date and time of the framework. 

Returns
clientDateAndTime 

This is the date and time returned by the client.

Errors
OSA_INVALID_DATE_TIME_FORMAT

7
Network service capability features

The service capability features provided to the application by service capabilities servers to enable access to network resources. 
Note: when the direction of a method in an interface class is “application to network”, this means that the method is invoked from the application to an SCS residing on the network side of the OSA interface.

7.1 Call Control

The Call control network service capability feature consists of two interface classes:

1. Call manager, containing management function for call related issues

2. Call, containing methods to control a call

A call can be controlled by one Call Manager only. A Call Manager can control several calls..


[image: image2.wmf]1

Call

Manager

Call

1

n


Figure 6 Call control classes usage relationship 

The Call Control service capability features are described in terms of the methods in the Call Control interface classes. Table 1 gives an overview of the Call Control methods and to which interface classes these methods belong.

CallManager
Call

enableCallNotification
routeCallToDestinationReq

disableCallNotification
routeCallToDestinationRes

callNotificationTerminated
routeCallToDestinationErr

callEventNotify
release

callAborted
deassignCall

callNotificationTerminated
getCallInfoReq


getCallInfoRes


getCallInfoErr


superviseCallReq


SuperviseCallRes


superviseCallErr


callFaultDetected


setAdviceOfCharge


setCallChargePlan

Table 1
Overview of Call Control interface classes and their methods

7.1.1
Call Manager

The generic call manager interface class provides the management functions to the generic call Service Capability Features. The application programmer can use this interface class to create call objects and to enable or disable call-related event notifications.

Method
enableCallNotification()

This method is used to enable call notifications to be sent to the application.

Direction
Application to network

Parameters
appInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria

Specifies the event specific criteria used by the application to define the event required. Examples of events are “incoming call attempt reported by network”, “answer”, “no answer”, “busy”.

Returns
assignmentID

Specifies the ID assigned by the generic call control manager object for this newly-enabled event notification.

Errors
USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user’s privacy setting

Method
disableCallNotification()

This method is used by the application to disable call notifications. 

Direction
Application to network

Parameters


assignmentID

Specifies the assignment ID given by the generic call control manager objectwhen the previous enableNotification() was called.

Returns
-

Errors
INVALID_ASSIGNMENTID 

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

Method
callEventNotify()

This method notifies the application of the arrival of a call-related event.

Direction
Network to application

Parameters
callReference

Specifies the reference to the call object to which the notification relates. 

eventInfo

Specifies data associated with this event. These data include originatingAddress, originalDestinationAddress, redirectingAddress and AppInfo (see for more explanation on these data the routeCallToDestination() method).

assignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment IDto associate events with event-specific criteria and to act accordingly.

appInterface

Specifies a reference to the application object which implements the callback interface for the new call.

Returns
-

Errors
-

Method
callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further communication will be possible between the call object and the application.

Direction
Network to application

Parameters
callReference
Specifies the call object that has aborted or terminated abnormally.




Returns
-

Errors
-

Method
callNotificationTerminated()

This method indicates to the application that all event notifications have been terminated (for example, due to faults detected).

Direction
Network to application

Parameters
-

Returns
-

Errors
-

7.1.2
Call

The generic call interface class provides a structure to allow simple and complex call behaviour to be used.

Method
routeCallToDestinationReq()

This asynchronous method requests routing of the call (and inherently attached parties) to the destination party (specified in the parameter TargetAddress). The destination party is attached to the call via a passive leg. This means that the call is not automatically released if the destination party disconnects from the call; only the leg with which the destination party was attached to the call is released in that case. . 

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

responseRequested

Specifies the set of observed events that will result in a routeCallToDestinationRes() being generated. 

targetAddress

Specifies the destination party to which the call should be routed. 

originatingAddress

Specifies the address of the originating (calling) party. 

originalDestinationAddress

Specifies the original destination address of the call, i.e. the address as specified by the originating party. This parameter should be equal to the originalDestinationAddress as received by the application in the eventInfo parameter of the callEventNotify method.

redirectingAddress

Specifies the last address from which the call was redirected. 

appInfo

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

assignmentID
Specifies the ID assigned by the network SCS. The same ID will be returned in the routeCallToDestinationRes or Err. This allows the application to correlate the request and the result.

Returns
-

Errors
USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user’s privacy setting

Method
routeCallToDestinationRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.). 

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

eventReport

Specifies the result of the request to route the call to the destination party. It also includes the mode that the call object is inand other related information.
assignmentID
Specifies the assignment ID of the routing request.

Returns
-

Errors
-

Method
routeCallToDestinationErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call could not be routed to the destination party (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.). 

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

errorIndication

Specifies the error which led to the original request failing.
assignmentID

Specifies the assignment ID of the routing request.

Returns
-

Errors
-

Method
release()

This method requests the release of the call and associated objects.

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

cause

Specifies the cause of the release.

Returns
-

Errors
-

Method
deassignCall()

This method requests that the relationship between the application and the call and associated object be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports or call information reports requested, then these reports will be disabled and any related information discarded.

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

Returns
-

Errors
-

Method
getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address. The call object will exist after the call is ended if information is required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Note: At the end of the call, the call information must be sent before the call is deleted.

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

callInfoRequested

Specifies the call information that is requested.

Returns
-

Errors
-

Method
getCallInfoRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate charging.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

callInfoReport

Specifies the call information requested.

Returns
-

Errors
-

Method
getCallInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

errorIndication

Specifies the error which led to the original request failing.

Returns
-

Errors
-

Method
superviseCallReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If an application calls this function before it calls a routeCallToDestinationReq() or a user interaction function the time measurement will start as soon as the call is answered by the B-party or the user interaction system.

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

time 

Specifies the granted time in milliseconds for the connection. When specified as 0, volume based supervision is applied. Either bytes (volume) or time should be specified.treatment

Specifies how the network should react after the granted connection time expired.

bytes 

Specifies the granted number of bytes that can be transmitted for the connection. When the quantity is specified as 0, time based supervision is applied. Either bytes (volume) or time should be specified.

Returns
-

Errors
-

Method
superviseCallRes()

This asynchronous method reports a call supervision event to the application.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

report

Specifies the situation, which triggered the sending of the call supervision response.

usedTime

Specifies the used time for the call supervision (in milliseconds).

usedVolume 

Specifies the used volume for the call supervision (in the same units as specified in the request).

Returns
-

Errors
-

Method
superviseCallErr()

This asynchronous method reports a call supervision error to the application.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

errorIndication

Specifies the error which led to the original request failing.

Returns
-

Errors
-

Method
callFaultDetected()

This method indicates to the application that a fault has been detected in the call.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call object in which the fault has been detected.

fault

Specifies the fault that has been detected.

Returns
-

Errors
-

Method
setAdviceOfCharge()

This method allows the application to the charging information that will be send to the end-users handset. 

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

aOCInfo

Specifies two sets of Advice of Charge parameter according to GSM

tariffSwitch

Specifies the tariff switch that signifies when the second set of AoC parameters becomes valid.

Returns
-

Errors
-

Method
setCallChargePlan()

Allows an application to include charging information in network generated CDR. 

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

callChargePlan
 Free Format string containing the application specific charging information

Returns
-

Errors
-

Sequence Diagrams

The following section will describe some scenarios to illustrate the use of the methods described above.

Enable Call notification

The first task to perform in order to allow applications to provide call control related services to certain users is to enable call-related events for these users to trigger the application. This is done with the method enableCallNotification().


[image: image3.wmf]CallControlManager

Call

Application

1:

enableCallNotification

( )


Figure 7 Enable call notification

Number translation

The example in figure 8 shows a simple number translation application.

After the call is triggered (according to the criteria in a previous enableCallNotification()), the SCS notifies the application with an eventCallNotify() message. This allows the application to perform the needed actions and continue the call set-up via a routeCallToDestination_Req() message. The SCS relays the result of the call set-up (both positive and negative) to the application, which ends after that.


[image: image4.wmf]2: 

callEventNotify

( )

CallControlManager

 Call

Application

3: 'translate number'

5: 

routeCallToDestination

_

Req

()

6: 

new()

7: 

routeCallToDestination

_

Res

()

4: 

setCallback

()


Figure 8 Simple number translation

Call barring

The next example (Figure 9) shows how a call barring application can be implemented:


[image: image5.wmf]Call

Application

UICall

CallControlManager

8: 

routeCallToDestination

_

Res

()

7: 

routeCallToDestination

_

Req

()

4: 

setCallback

()

5: 

sendInfoAndCollect

()

6: 

sendInfoAndCollect

_

Res

()

2: 

callEventNotify

()

3: 

setCallback

()


Figure 9
Call barring application

Pre-paid with advice of charge

The next example shows how a pre-paid application can be implemented:

With a pre-paid application it is the application that will determine the charging for the call. This means that the application will hold the whole tariffing scheme needed and needs to control the whole call. For the call shown the following conditions apply:

-
It is a long call

-
Two tariff changes take place during the call.

-
The application will inform the user about the applicable charging (the methods needed for this are described in section 7.5.2).

After the application has been triggered, it sends a superviseCall_Req() message indicating that the application will be responsible for charging the call. Before the call is be routed to the requested destination(5), the application sends the allowed time for the call (4) and informs the user about the charging applicable (using the Advice of Charge functionality in the core network) for this call (3). The sent information consists of two sets of AoC information and a tariff switch. The application will be notified via the superviseCall_Res() message if the tariff switch expired during the supervised period. This allows the application to send a new set of AoC information and a new tariff switch. 

The application is notified of the expiration of the allowed time (7) and determines if the user has enough account left to continue with the call.

1
If there is enough account left a new time slot is allowed

2 Is there not enough account, the user will be notified and the call terminated after some time in order to allow the user to finish the call graciously.


[image: image6.wmf]Application

    

CallControlManager

Call

 

UICall

1: 

enableCallNotification

()

2: 

callEventNotify

()

3: 

setAdviceOfCharge

()

5: 

routeCallToDestination

_

Req

()

7: 

superviseCall

_

Res

()

8: 

superviseCall

_

Req

()

9: 

superviseCall

_

Res

()

10:  

setAdviceOfCharge

()

11: 

superviseCall

_

Req

()

12: 

superviseCall

_

Res

()

4: 

superviseCall

_

Req

()

13: 

sendInfo

_

Req

()

14: 

sendInfo

_

Res

()

15: 

superviseCall

_

Req

()

16: 

superviseCall

_

Res

()

17: 

release()

6: 

routeCallToDestination

_

Res

()


Figure 10 Pre-paid with AoC

7.2
Network User Location

The Network User Location service capability feature provides terminal location information, based on network-related information, such as a VLR Number, Location Area Identification, or Cell Global Identification. It may also provide geographical location information, if the network is able to support the corresponding capability.

It consists of a single interface class, permitting an application to perform the following:

· User location requests.

· Requests for starting (or stopping) the generation by the network of periodic user location reports.

· Requests for starting (or stopping) the generation by the network of user location reports based on location changes.

Method
locationReportReq()

Request for mobile-related location information on one or several users.

Direction
Application to network

Parameters
appLocationCamel

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the obtainInterface() method (refer to Authentication interface).

users

Specifies the user(s) for which the location shall be reported.

Returns
assignmentID
Specifies the assignment ID of the location-report request.

Errors
INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user’s privacy setting

Method
locationReportRes()

Delivery of a mobile location report. The report is containing mobile-related location information for one or several users.

Direction
Network to application

Parameters
assignmentID
Specifies the assignment ID of the location-report request.

locations

Specifies the location(s) of one or several users.

Returns
-

Errors
INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method
locationReportErr()

This method indicates that the location report request has failed.

Direction
Network to application

Parameters
assignmentID
Specifies the assignment ID of the failed location report request.

cause

Specifies the error that led to the failure.

diagnostic

Specifies additional information about the error that led to the failure

Returns
-

Errors
-

Method
periodicLocationReportingStartReq()

Request for periodic mobile location reports on one or several users. 

Direction
Application to network

Parameters
appLocation

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the obtainInterface() method (refer to Authentication interface).

users

Specifies the user(s) for which the location shall be reported.

reportingInterval

Specifies the requested interval in seconds between the reports.

Returns
assignmentID
Specifies the assignment ID of the periodic location-reporting request.

Errors
INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user’s privacy setting

Method
periodicLocationReportingStop()

This method stops the sending of periodic mobile location reports for one or several users.

Direction
Application to network

Parameters
stopRequest

Specifies how the assignment shall be stopped, i.e. if whole or just parts of the assignment should be stopped. 

Returns
-

Errors
INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method
periodicLocationReport()

Periodic delivery of mobile location reports. The reports are containing mobile-related location information for one or several users.



Direction
Network to application

Parameters
assignmentID
Specifies the assignment ID of the periodic location-reporting request.

locations

Specifies the location(s) of one or several users.

Returns
-

Errors
INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method
periodicLocationReportErr()

This method indicates that a requested periodic location report has failed. Note that errors only concerning individual users are reported in the ordinary periodicLocationReport() message. 

Direction
Network to application

Parameters
assignmentID
Specifies the assignment ID of the failed periodic location reporting start request.

cause

Specifies the error that led to the failure.

diagnostic

Specifies additional information about the error that led to the failure.

Returns
-

Errors
-

Method
triggeredLocationReportingStartReq()

Request for user location reports, containing mobile related information, when the location is changed (the report is triggered by the location change, e.g. change of VLR number, change of Global Cell Identification).

Direction
Application to network

Parameters
appLocation

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the obtainInterface() method (refer to Authentication interface).

users

Specifies the user(s) for which the location shall be reported.

trigger
Specifies the trigger conditions.

Returns
assignmentID
Specifies the assignment ID of the triggered location-reporting request.

Errors
INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user’s privacy setting

Method
triggeredLocationReportingStop()

Request that triggered mobile location reporting should stop.

Direction
Application to network

Parameters
stopRequest

Specifies how the assignment shall be stopped, i.e. if whole or just parts of the assignment should be stopped.

Returns
-

Errors
INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment

Method
triggeredLocationReport()

Delivery of a report that is indicating that one or several user's mobile location has changed.

Direction
Network to application

Parameters
assignmentID
Specifies the assignment ID of the triggered location-reporting request.

location

Specifies the location of the user.

criterion

Specifies the criterion that triggered the report.

Returns
-

Errors
INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method
triggeredLocationReportErr()

This method indicates that a requested triggered location report has failed. Note that errors only concerning individual users are reported in the ordinary triggeredLocationReport() message.

Direction
Network to application

Parameters
assignmentID
Specifies the assignment ID of the failed triggered location reporting start request.

cause

Specifies the error that led to the failure.

diagnostic

Specifies additional information about the error that led to the failure.

Returns
-

Errors
-

7.3 User Status

The User Status service capability feature provides general user status monitoring. It allows applications to obtain the status of the user’s terminal. It consists of a single interface class.

Method
statusReportReq()

Request for a report on the status of one or several users. 

Direction
Application to network

Parameters
appStatus

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the obtainInterface() method (refer to Authentication interface).

users

Specifies the user(s) for which the status shall be reported.

Returns
assignmentID
Specifies the assignment ID of the status-report request.

Errors
INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user’s privacy setting

Method
statusReportRes()

Delivery of a report, that is containing one or several user's status.

Direction
Network to application

Parameters
assignmentID
Specifies the assignment ID of the status-report request.

status

Specifies the status of one or several users.

Returns
-

Errors
INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method
statusReportErr()

This method indicates that the status report request has failed.

Direction
Network to application

Parameters
assignmentID
Specifies the assignment ID of the failed status report request.

cause

Specifies the error that led to the failure.

diagnostic

Specifies additional information about the error that led to the failure.

Returns
-

Errors
-

Method
triggeredStatusReportingStartReq()

Request for triggered status reports when one or several user's status is changed. The user status SCF will send a report when the status changes. 

Direction
Application to network

Parameters
appStatus

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the obtainInterface() method (refer to Authentication interface).

users

Specifies the user(s) for which the status changes shall be reported.

Returns
assignmentID
Specifies the assignment ID of the triggered status-reporting request.

Errors
INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

NO_CALLBACK_ADDRESS_SET

The requested method has been refused, because no callback address is set.

RESOURCES_UNAVAILABLE

The required resources in the network are not available.
The application may try to invoke the method at a later time.

USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user’s privacy setting

Method
triggeredStatusReportingStop()

This method stops the sending of status reports for one or several users.

Direction
Application to network

Parameters
stopRequest

Specifies how the assignment shall be stopped, i.e. if whole or just parts of the assignment should be stopped.

Returns
-

Errors
INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method
triggeredStatusReport()

Delivery of a report that is indicating that a user's status has changed.

Direction
Network to application

Parameters
assignmentID
Specifies the assignment ID of the triggered status-reporting request.

status

Specifies the status of the user.

Returns
-

Errors
INVALID_PARAMETER_VALUE

A method parameter has an invalid value.

INVALID_ASSIGNMENT_ID

The assignment ID does not correspond to one of a valid assignment.

Method
triggeredStatusReportErr()

This method indicates that a requested triggered status reporting has failed. Note that errors only concerning individual users are reported in the ordinary triggeredStatusReport() message.

Direction
Network to application

Parameters
assignmentID
Specifies the assignment ID of the failed triggered status reporting start request.

cause

Specifies the error that led to the failure.

diagnostic

Specifies additional information about the error that led to the failure.

Returns
-

Errors
-

7.4
Terminal Capabilities

It shall be possible for a application to request Terminal Capabilities as defined by MExE [3]. The terminal capabilities are provided by a MExE compliant terminal to the MExE Service Environment either on request or by the terminal itself.

Terminal Capabilities are available only after a Capability negotiation has previously taken place between the user´s MExE terminal and the MExE Service environment as specified in [3]. 

Note: for Release 99 only WAP MExE devices can supply terminal capabilities.

The Terminal Capabilities service capability feature is supported by a unique interface class, which consists of the following method.

The Terminal Capabilities service capability feature is supported by a unique interface class, which consists of the following method.

Method
getTerminalCapabilities()

This method is used by an application to get the capabilities of a user´s terminal.

Direction
Application to Network 

Parameters
terminalIdentity

Identifies the terminal. It may be a logical address known by the WAP Gateway/PushProxy.

Returns
statusCode

Indicates whether or not the terminal capabilities are available.

terminalCapabilities

Specifies the latest available capabilities of the user´s terminal.
This information, if available, is returned as CC/PP headers  as specified in W3C [12] and adopted in the WAP UAProf specification [13]. It contains URLs; terminal attributes and values, in RDF format; or a combination of both. 

Errors
-

7.5
Message Transfer

7.5.1
Generic User Interaction

The Generic User Interaction service capability feature is used by applications to interact with end users. It consists of two interface classes:

1. User Interaction Manager, containing management functions for User Interaction related issues

2. Generic User Interaction, containing methods to interact with an end-user

The Generic User Interaction service capability feature is described in terms of the methods in the Generic User Interaction interface classes. 

The following table gives an overview of the Generic User Interaction methods and to which interface classes these methods belong.

User Interaction Manager
Generic User Interaction

createUI
sendInfoReq

createUICall
sendInfoRes

enableUINotification
sendInfoErr

disableUINotification
sendInfoAndCollectReq

userInteractionEventNotify
sendInfoAndCollectRes

userInteractionAborted
sendInfoAndCollectErr


release


userInteractionFaultDetected

Table 2
Overview of Generic User Interaction interface classes and their methods

User Interaction Manager

Inherits from the generic service interface.

The User Interaction Manager interface class provides the management functions to the User Interaction class interface.

Method
createUI()

This method is used to create a new (non call related) user interaction object.  

Direction
Application to  network

Parameters
appUI

Specifies the application interface for callbacks from the user interaction created.

userAddress

Indicates the end-user whom to interact with

Returns
userInteraction

Specifies the interface and sessionID of the user interaction created.

Errors
USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user’s privacy setting

Method
createUICall()

This method is used to create a new call related user interaction object.

The user interaction can take place to the specified party (userAdress) or to all parties in a call (callIdentifier). Only one of callIdentifier or userAdress may be defined (the other should be set to NULL).

Note that for certain implementations user interaction can only be performed towards the controlling call party, which shall be the only party in the call.

Direction
Application to network

Parameters
appUI

Specifies the application interface for callbacks from the user interaction created. 

callIdentifier

Specifies the call interface and session ID of the call  associated with the send info operation. 

callLegIdentifier

Indicates the end-user whom to interact with

Returns
userInteraction

Specifies the interface and sessionID of the user interaction created.

Errors


Method
enableUINotification()

This method is used to enable the reception of user initiated user interaction. 

Direction
Application to network

Parameters
appInterface 
If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method. 

eventCriteria 
Specifies the event specific criteria used by the application to define the event required, like user address and service code.

Returns
assignmentID 
Specifies the ID assigned  for this newly-enabled event notification. 

Errors


Method
disableUINotification()

This method allows the application to remove notification for UI related actions previously set.

Direction
Application to network

Parameters
assignmentID 
Specifies the assignment ID given by the user interaction manager interface when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return an error code.

Returns


Errors


Method
userInteractionEventNotify()

This method notifies the application of a user initiated request for user interaction. 

Direction
Network to Application

Parameters
ui 
Specifies the reference to the interface and the sessionID to which the notification relates.  

eventInfo
Specifies data associated with this event. 

assignmentID
Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly. 



Returns
appInterface

Specifies the application interface for callbacks from the user interaction created. 

Errors


Method
userInteractionAborted()

This method indicates to the application that the User Interaction SCF instance has terminated or closed abnormally. No further communication will be possible between the User Interaction SCF instance and application.

Direction
Network to Application

Parameters
userInteraction

Specifies the interface and sessionID of the user interaction SCF that has terminated.

Returns


Errors


Generic User Interaction

Inherits from the generic service interface. The Generic User Interaction interface class provides functions to send information or data to, or gather information from,  the user (or call party). The information to send can be an announcement or a text. The data downloaded in the terminal is specified by a URL.

Method
sendInfoReq()

This asynchronous method sends information to the user. 

Direction
Application to Network

Parameters
userInteractionSessionID

Specifies the user interaction session ID of the user interaction.

info

Specifies the information to send to the user. This information can be:

- an infoID, identifying pre-defined information to be send (announcement and/or text);

- a string, defining the text to be sent;

- a URL , identifying pre-defined information or data to be sent to or downloaded into the terminal

variableInfo 
Defines the variable part of the information to send to the user.

repeatIndicator 

Defines how many times the information shall be send to the end-user. In the case of a call related user interaction, a value of zero (0) indicates that the announcement shall be repeated until the call or call leg is released or an abortActionReq() is sent.

responseRequested

Specifies if a response is required from the call user interaction SCF, and any action the SCF should take.

Returns
assignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Errors


Method
sendInfoRes()

This asynchronous method informs the application about the start or the completion of a sendInfoReq(). This response is called only if the application has required a response. 

Direction
Network to Application

Parameters
userInteractionSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID 

Specifies the ID assigned by the generic user interaction interface for a user interaction request.
response

Specifies the type of response received from the user.

Returns


Errors


Method
sendInfoErr()

This asynchronous method indicates that the request to send information was unsuccessful.

Direction
Network  to Application

Parameters
userInteractionSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID 

Specifies the ID assigned by the generic user interaction interface for a user interaction request.
error

Specifies the error which led to the original request failing.

Returns


Errors


Method
sendInfoAndCollectReq()

This asynchronous method plays an announcement or sends other information to the user and collects some information from the user. The announcement usually prompts for a number of characters (for example, these are digits or text strings such as "YES" if the user’s terminal device is a phone).

Direction
Application to Network

Parameters
userInteractionSessionID

Specifies the user interaction session ID of the user interaction.

info
Specifies the information to send to the user.

variableInfo 
Defines the variable part of the information to send to the user. 

criteria

Specifies additional properties for the collection of information, such as the maximum and minimum number of characters, end character, first character timeout and inter-character timeout.
responseRequested

Specifies if a response is required from the call user interaction SCF, and any action the SCF should take.

Returns
assignmentID
Specifies the ID assigned by the generic user interface

Errors


Method
sendInfoAndCollectRes()

This asynchronous method returns the information collected to the application.

Direction
Network to Application

Parameters
userInteractionSessionID

Specifies the session ID of the user interaction.

assignmentID 
Specifies the ID assigned by the generic user interaction interface for a user interaction request.
response

Specifies the type of response received from the user.

info

Specifies the information collected from the user.

Returns


Errors


Method
sendInfoAndCollectErr()

This asynchronous method indicates that the request to send information and collect a response was unsuccessful.

Direction
Network to Application

Parameters
userInteractionSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID 
Specifies the ID assigned by the generic user interaction interface for a user interaction request.
error

Specifies the error which led to the original request failing.

Returns


Errors


Method
release()

This method requests that the relationship between the application and the user interaction object be released. It causes the release of the used user interaction resources and interrupts any ongoing user interaction.

Direction
Application to Network

Parameters
userInteractionSessionID

Specifies the user interaction session ID of the user interaction.

Returns


Errors


Method
userInteractionFaultDetected()

This method indicates to the application that a fault has been detected in the user interaction.

Direction
Network to Application 

Parameters
userInteractionSessionID

Specifies the interface and sessionID of the user interaction SCF in which the fault has been detected. 

fault

Specifies the fault that has been detected.

Returns
.

Errors


7.5.2
Call User Interaction

The Call User Interaction  service capability feature is used by applications to interact with end users participating to a call. It consists of two interface classes:

1. User Interaction Manager, containing management functions for User Interaction related issues. This class is the same as the one defined in section 7.5.1.

2. Call User Interaction, extending Generic User Interaction for call-specific user interaction. It provides functions to send information to, or gather information from,  a user (or call party) in a call.
The Call User Interaction service capability feature is described in terms of the methods in the Call User Interaction interface classes. 

The following table gives an overview of the Call User Interaction methods and to which interface classes these methods belong.

User Interaction Manager
Call User Interaction

As defined for the Generic User Interaction SCF
Inherits from Generic User Interaction and adds:


abortActionReq


abortActionRes


abortActionErr

Table 3
Overview of Call User Interaction interface classes and their methods

Method
abortActionReq()

This asynchronous method aborts a user interaction operation, e.g. a sendInfoCall_Req(). The call and call leg are otherwise unaffected. The call user interaction SCF interrupts the indicated action. 

Direction
Application to Network

Parameters
userInteractionSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : TAssignmentID
Specifies the user interaction request to be cancelled.


Returns


Errors


Method
abortActionRes()

This asynchronous method confirms that the request to abort a user interaction operation on a call leg was successful. 

Direction
Network to Application

Parameters
userInteractionSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : TAssignmentID
Specifies the user interaction request to be cancelled.



Returns


Errors


Method
abortActionErr()

This asynchronous method indicates that the request to abort a user interaction operation on a call leg resulted in an error.

Direction
Network to Application

Parameters
userInteractionSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : TAssignmentID
Specifies the user interaction request to be cancelled.

error

Specifies the error which led to the original request failing.

Returns


Errors


7.6
User Profile Management

User Profile information may be distributed between the Home Environment and the Home Environment Value-Added Services Providers. The HE-VASP may manage information specific to the services supported by their OSA applications. For this, they may use models and mechanisms, which are out of the scope of OSA release 99.

Home Environment User Profile information consists of various interface and service related information. Of particular interest in the context of release 99 is the following information:

· list of services to which the end-user is subscribed

· service status (active/inactive)

· privacy status with regards to network service capabilities (e.g. user location, user interaction)

· terminal capabilities

Home Environment user profile information may be stored centrally, or the information may be distributed over relevant physical entities.

Terminal capabilities may be accessed by OSA applications through the network Terminal Capabilities SCF.

History

   Date
Version
Comment

July 1999
0.1.0
Initial Draft produced in  Hazlet, New Jersey, USA

September 1999
0.2.0
  Version presented to S2 plenary in Bonn, Germany (not including all agreed changes yet from VHE/OSA adhoc session)

September 1999
0.2.1
Output of Bonn meeting
(Presented to SA for information, since V1.0.0 was not available due to 3GPP e-mail exploder problems).

October 1999
0.3.0
 Version sent to S2 e-mail list and proposed to send to SA plenary

October 1999
0.3.1
 Small editorial updates in Interface section (subclauses 6 and 7)

October 1999
1.0.0
 Version 0.3.1 raised to V1.0.0 by S2 e-mail approval and sent to SA e-mail list for information

November 1999
1.1.0
 Updated after comments in S2#9 according to S2-99C06 (S2-99B32, S2-99B33 and S2-99B36)

December 1999
1.1.1
 Updated after drafting session in Munich, approved in S2#11

February 2000
1.2.0
 Updated after S2#11 according to S2-000230 (S2-000081, S2-000146, S2-000148, S2-000172, S2-000187, S2-000188, S2-000189, S2-000202, S2-000203) and with various minor editorial changes

February 2000
1.3.0
 Updated during OSA interim session in Stockholm (February 23-24) and consolidated the week after.

March 2000
1.4.0
 Updated during OSA drafting session in S2#12 according to S2-000500 and S2-000355.

March 2000
2.0.0
Editorial changes compared to 1.4.0. Presented to SA#7 for approval.

March 2000
3.0.0
Output of SA#7. Minor editorial changes compared to v.2.0.0.





Rapporteur: Christophe Gourraud, Ericsson

Email:christophe.gourraud@lmc.ericsson.se

Telephone: +1 514 345 7900 (#5795)




















































3GPP


_1011694424.doc
1


Call 


Manager








Call 








1





n









_1019991846.doc


2: callEventNotify( )








CallControlManager











 Call




















Application





3: 'translate number'





5: routeCallToDestination_Req()





6: new()





7: routeCallToDestination_Res()




















4: setCallback()












_1019991888.doc





Call








Application




















UICall








CallControlManager











8: routeCallToDestination_Res()





7: routeCallToDestination_Req()





4: setCallback()





5: sendInfoAndCollect()





6: sendInfoAndCollect_Res()








2: callEventNotify()




















3: setCallback()












_1019991966.doc





Application














    CallControlManager





Call 





 UICall




















1: enableCallNotification()





2: callEventNotify()








3: setAdviceOfCharge()








5: routeCallToDestination_Req()





7: superviseCall_Res()








8: superviseCall_Req()





9: superviseCall_Res()








10:  setAdviceOfCharge()





11: superviseCall_Req()





12: superviseCall_Res()








4: superviseCall_Req()





13: sendInfo_Req()








14: sendInfo_Res()











15: superviseCall_Req()





16: superviseCall_Res()








17: release()





6: routeCallToDestination_Res()












_1013257121.doc





CallControlManager

















Call




















Application











1: 





enableCallNotification





( )









_997805625.doc
How to create a CR
Michael Sanders, 3GPP support team, (last updated 2/09/99)

1)
Open the CR cover sheet with MS Word 97. The lastest version of the CR coversheet can be found at:


ftp://ftp.3gpp.org/information/3gCRF-??.DOC


2)
Fill out all areas that are relevant on the CR cover sheet - only the areas that have yellow shading shall be filled out. See Annex A of these instructions for further detail. 


3)
Open the specification to which you wish to make a change. It is very IMPORTANT  to ensure that you are using the latest version of the specification to make the change. The latest versions of all approved 3G specifications is located at:


for the 3GPP:  ftp://ftp.3gpp.org/specifications/      for SMG: http://docbox.etsi.org/tech-org/document/smg/specs

Do a "save as" using a file name related to the tdoc number (e.g. T3-99123.DOC).

4)
If the formatting looks incorrect (most easily noticed by the fact that there is no space between paragraphs), it may be because you do not have the correct document sheet in your MS Word style directory. All 3GPP specification use the style sheet 3GPP_70.DOT. This can be downloaded from:



ftp://ftp.3gpp.org/information/3gpp_70.dot

5)
Go to the beginning of the heading of the first subclause which you want to change. Press <CTRL><SHIFT><HOME> to select everything before that point and delete it.


6)
Switch to the window in MS word that contains your CR cover sheet and do a <CTRL>A   <CTRL>C to select and copy the entire sheet (including the section break at the end). Switch back to the other window with the specification to be changed and paste it in.


7)
Between group of changed pages in the CR, insert a section break (insert / break / next page/)


8)
When all the changes have been made (using the "tools / track changes" feature of MS Word 97), the headers and page number need to be corrected other the headers will contain an error message like "error, reference not found". You can fix this by changing to page layout mode (view / page layout) to see the headers. Then, go to the menu item "view / header and footer", select the frame that contains the error message(s) ini the header and delete them (there are normally 2). Do not delete the page number in the middle. On the left side, write the spec name and current version number For example, "3G TS 21.111 version 3.0.0 (1999-04)". Go back to normal view.


9) 
For each group of changes, insert the correct starting page number. The number should be that which is a clean unmodified specification. It is only a guide to the reader only and so they can be +/- 1 page number wrong. Insert the page number using the following method. Go to the line following the first section break in your CR. Choose the menu item insert / page number / format / start at and insert the correct starting page number for that group of changes. click "OK" and then "CLOSE" (don't press "OK" at this last step). Repeat this step for each section break.


10)
When you have finished making all changes, go to "tools / track changes / highlight changes" and uncheck the "track changes while editing" box, otherwise the page numbers in the headers will be difficult to read. Make sure that the two other options in this box (highlight changes on screen" and "highlight changes in printed document" are both maked "X".


Examples of expressions of prevision in 3GPP specifications


To ensure that everybody else understands your proposed chnaged the same way that you do, it is very important to keep to the following rules:


SHALL: To be used to indicate a requirement. e.g. "The ME shall reset the USIM" is correct Do not use "The ME resets the USIM" or "the ME must reset the USIM"


SHOULD: To be used to indicate recommendation. i.e. if, among several possibilities one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action is deprecated but not prohibited.


MAY: To be used to indicate permission. To be used instead of phrases such as "is permitted", "is allowed" or is permissible". The opposite of "may" is "need not".


CAN: To be used to indicate possibility and capability. To be used instead of phrases such as "be able to", "there is a possibility of" or "it is possible to".


A more detailed guide to the 3GPP drafting rules can be found on the 3GPP server at:



ftp://ftp.3gpp.org/information/drafting-rules.pdf

ANNEX A   
The CR cover sheet


This annex provides further information on how to fill out the cover sheet of a CR.


The header:


a)
The header, including the TSG or Working Group, the tdoc number (normally obtinaed from the 3GPP support team) and the meeting location and date.


The title box:


b)
The change request number. This is a 3 digit number and is allocated by the 3GPP support team project manager of the relevant WG. For GSM specifications, it is prefixed with an "A"


c)
The 3G or GSM specification number (e.g. 21.111 for 3G or 12.05 for GSM).


d)
The TSG or SMG plenary meeting to which this CR will be submitted to if it gets agreed at the WG meeting. 


e)
for approval/for information: one box only shall be marked with an "X"


Proposed change affects:


f)
At least one box shall be marked with an "X"


Source:


g)
The company name of the author of the CR. If the CR has already been agreed at a Working groups or sub working group, meeting, the subgroup name ( and Tdoc number) should be used instead.


Subject:


h)
One line (only) of concise text that describes the subject of the CR. Details should be put under "reason for change"



good examples:
"Clarification to FETCH command"






"Alignment of operation and parameter names"



recently used



bad examples:
"correction"






"editorial correction"






"correction to TS xxx.yy"






"various improvements"


Work item:



h)
The name of the 3G work item for which the CR is relevant.


Category and release:


i)
Choose one category only


Reason:


j)
This should be 1 to 10 lines of text that describes in further detail the reasons why the change is necessary and how the change is done.


Clauses Affected:


m)
Each subclause that is affected by the change should be listed here. New subclause number can be followed by " (new) ".


Other specs affected:


n)
Other 3G core specifications: to be used if the CR is linked to a CR for another 3G specification.
Other 2G core specifications: to be used if a CR is also needed for a GSM or other 2G specification.



MS test specifications: to be used if a change is needed to the MS test specifications.



BSS test specifications: to be used if a change is needed to the base station test specifications.



O&M specifications: to be used if a change is needed to O&M specifications.



When listing other CRs in part n) use, for example, the form "21.111-CR001" or "12.05-A123"


______________________________________


How to create a CR for 3G or SMG specifications.


File location: http://ftp.3gpp.org/information/3gCRF-??.doc





