
3GPP Meeting S2#13
Document
S2-000805

Berlin, Germany, 22-26 May 2000

e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST
Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

23.127
CR
001
Current Version:
3.0.0

GSM (AA.BB) or 3G (AA.BBB) specification number (

(CR number as allocated by MCC support team

For submission to:
SA#8
for approval
x

strategic

(for SMG

list expected approval meeting # here (
for information

non-strategic

use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects:
(U)SIM

ME

UTRAN / Radio

Core Network
x

(at least one should be marked with an X)

Source:
Alcatel, Ericsson, Siemens
Date:
22.5.2000

Subject:
OSA Internal API

Work item:
VHE/OSA

Category:
F
Correction

Release:
Phase 2

A
Corresponds to a correction in an earlier release

Release 96

(only one category
B
Addition of feature

Release 97

shall be marked
C
Functional modification of feature
x

Release 98

with an X)
D
Editorial modification

Release 99
x

Release 00

Reason for
change:

Introduction of an open API between framework and SCSs in the OSA architecture allows for multi-vendor solutions, where framework servers and SCSc are provided by different manufacturers.

Clauses affected:

Other specs
Other 3G core specifications

(List of CRs:

affected:
Other GSM core specifications

(List of CRs:

MS test specifications

(List of CRs:

BSS test specifications

(List of CRs:

O&M specifications

(List of CRs:

Other
comments:

[image: image1.wmf]help.doc

 <--------- double-click here for help and instructions on how to create a CR.

3
Definitions and abbreviations

3.1
Definitions

For the purposes of this TS, the following definitions apply:

Applications: software components providing services to end-users by utilising service capability features.

HE-VASP: see [9]

Home Environment: responsible for overall provision of services to users.
Local Service: see[9]

OSA Interface: Standardised Interface used by applications to access service capability features.
OSA Internal API: Standardised API between framework and service capability servers.
Personal Service Environment: contains personalised information defining how subscribed services are provided and presented towards the user. The Personal Service Environment is defined in terms of one or more User Profiles.

Service Capabilities: see [9]

Service Capability Feature: see [9]

Service Capability Server: Functional Entity providing OSA interfaces towards an application.

Services: see [9]

User Interface Profile: see [9]

User Profile: see [9]

User Services Profile: see [9].

Value Added Service Provider see [9]
Virtual Home Environment: see [9].

Further UMTS related definitions are given in 3G TS 22.101 and 3G TR 22.905.

5.1
Overview of the Open Service Architecture

The Open Service Architecture consists of three parts:

-
Applications, e.g. VPN, conferencing, location based applications. These applications are implemented in one or more Application Servers;

-
Framework, providing applications with basic mechanisms that enable them to make use of the service capabilities in the network. Examples of framework service capability features are Authentication and Discovery. Before an application can use the network functionality made available through the Service Capability Servers, authentication between the application and framework is needed. After authentication, the discovery service capability feature enables the application to find out which network service capability features are provided by the Service Capability Servers. The network service capability features are accessed by the methods defined in the OSA interface classes.

-
Service Capability Servers, providing the applications with service capability features, which are abstractions from underlying network functionality. Examples of service capability features offered by the Service Capability Servers are Call Control and User Location. Similar service capability features may possibly be provided by more than one Service Capability Server. For example, Call Control functionality might be provided by SCSs on top of CAMEL and MExE.

The OSA service capability features are specified in terms of a number of interface classes and their methods. The interface classes are divided into two groups:

-
framework interface classes, describing the methods on the framework

-
 network interface classes, describing the methods on the service capability servers.

The interface classes are further divided into methods. For example, the Call Manager interface class might contain a method to create a call (which realises one of the Service capability features ‘Initiate and create session’ as specified in [9]).

Note that the CAMEL Service Environment does not provide the service logic execution environment for applications using the OSA interface, since these applications are executed in Application Servers.

[image: image2.wmf]framework

User Location

Call control

HLR

CSE

WGW

WPP

Servers

E.g. Location server

MExE server

 SAT server

Service capability server(s)

Interface

class

OSA API

Open

Service

Architecture

discovery

Application

Application

server

OSA internal API

Figure 1 Overview of Open Service Architecture

This specification, together with the associated stage 3 specification, defines the OSA interface and the OSA internal API between the framework and the service capability servers. OSA does not mandate any specific platform or programming language.

The Service Capability Servers that implement the OSA interface classes are functional entities that can be distributed across one or more physical nodes. For example, the User Location interface classes and Call Control interface classes might be implemented on a single physical entity or distributed across different physical entities. Furthermore, a service capability server can be implemented on the same physical node as a network functional entity or in a separate physical node. For example, Call Control interface classes might be implemented on the same physical entity as the CAMEL protocol stack (i.e. in the SCP) or on a different physical entity.

Several options exist:

Option 1

The OSA interface classes are implemented in one or more physical entity, but separate from the physical network entities. Figure 2 shows the case where the OSA interface classes are implemented in one physical entity, called “gateway” in the figure. Figure 3 shows the case where the SCSs are distributed across several ‘gateways’.

[image: image4.wmf]SCS

‘Gateway’

OSA Interface

Non-

standardised

Interfaces

CSE

 ….

HLR

Physical entity

Functional entity

Figure 2 SCSs and network functional entities implemented in separate physical entities

[image: image5.wmf]SCS

‘Gateway’

OSA Interface

Non-

standardised

Interfaces

CSE

 ….

HLR

SCS

SCS

Figure 3 SCSs and network functional entities implemented in separate physical entities, SCSs distributed across several ‘gateways’.

Option 2

The OSA interface classes are implemented in the same physical entities as the traditional network entities (e.g. HLR, CSE), see figure 4.

[image: image6.wmf]SCS

OSA Interface

CSE

 ….

HLR

SCS

SCS

Figure 4 SCSs and network functional entities implemented in same physical entities

Option 3

Option 3 is the combination of option 1 and option 2, i.e. a hybrid solution.

[image: image7.wmf]‘Gateway’

OSA Interface

Non-

standardised

Interfaces

CSE

 ….

HLR

SCS

SCS

Figure 5 Hybrid implementation (combination of option 1 and 2)

It shall be noted that in all cases there is only one framework. This framework may reside within one of the physical entities containing an SCS or in a separate physical entity.

From the application point of view, it shall make no difference which implementation option is chosen, i.e. in all cases the same network functionality is perceived by the application. The applications shall always be provided with the same set of interface classes and a common access to framework and service capability feature interfaces. It is the framework that will provide the applications with an overview of available service capability features and how to make use of them.

5.2
Basic mechanisms in the Open Service Architecture

This section explains which basic mechanisms are executed in OSA prior to offering and activating applications.

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

-
Authentication: Once an off-line service agreement exists, the application can access the authentication interface. The authentication model of OSA is a peer-to-peer model. The application must authenticate the framework and vice versa. The application must be authenticated before it is allowed to use any other OSA interface.

-
Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of determining what a previously authenticated application is allowed to do. Authentication must precede authorisation. Once authenticated, an application is authorised to access certain service capability features.

-
Discovery of framework and network service capability features. After successful authentication, applications can obtain available framework interface classes and use the discovery interface to obtain information on authorised network service capability features. The Discovery interface can be used at any time after successful authentication.

-
Establishment of service agreement. Before any application can interact with a network service capability feature, a service agreement must be established. A service agreement may consist of an off-line (e.g. by physically passing messages) and an on-line part. The application has to sign the on-line part of the service agreement before it is allowed to access any network service capability feature.

-
Access to network service capability features: The framework must provide access control functions to authorise the access to service capability features or service data for any API operation from a client, with the specified security level, context, domain, etc.

Basic mechanism between Framework and Service Capability Server:

· Registering of network service capability features. SCFs offered by a Service Capability Server can be registered at the Framework. In this way the Framework can inform the Applications upon request about available service capability features (Discovery). For example, this mechanism is applied when installing or upgrading a Service Capability Server. See chapter 8 for details.

Basic mechanisms between Application Server and Service Capability Server:

· Request of event notifications. This mechanism is applied when a user has subscribed to an application and that application needs to be invoked upon receipt of events from the network related to the user. For example, when a user subscribes to a screening application, the application needs to be invoked when the user makes a call. It will therefore request to be notified when a call setup is performed, with the user number as Called Party Number.

6.1.3 OSA Access

During an authenticated session accessing the Framework, the client application will be able to select and access an instance of a framework or network service capability feature.

Access to framework SCFs is gained by invoking the obtainInterface, or obtainInterfaceWithCallback operations. The latter is used when a callback reference is supplied to the framework. For example, a network SCF discovery interface class reference is returned when invoking obtainInterface with “discovery” as the SCF name.

In order to use network SCFs, the client must first be authorised to do so by establishing a service agreement with the Home Environment. The client application uses the discovery SCF to retrieve the ID of the network SCF they wish to use.They may then use the accessCheck operation to check that they are authorised to use the network SCF. The selectService operation is used to tell the Home Environment that the client application wishes to use the network SCF. The signServiceAgreement operation is used to digitally sign the agreement, and provide non-repudiation for both parties in agreeing that the SCF would be available for use.

Establishing a service agreement is a business level transaction, which requires the HE-VASP that owns the client application to agree terms for the use of an SCF with the Home Environment. Service agreements can be reached using either off-line or on-line mechanisms. Off-line agreements will be reached outside of the scope of OSA interactions, and so are not described here. However, client applications can make use of service agreements that are made off-line. Some Home Environments may only offer off-line mechanisms to reach service agreements.

After a service agreement has been established between the client and the Home Environment domains, the client application will be able to make use of this agreement to access the network SCF.

The accessCheck operation allows the client application to check whether it has permission to access (read, write, etc) to a specified SCF, and specific SCF features. The client application defines the security domain and context of access to the SCF. The access control policy is based on a number of conditions, events and permissions that determine whether the client application is authorised to access the SCF/feature.

The accessCheck operation is optional, in that can be called by the client application to check that it has permission to use specific SCF features, before starting an SCF instance. It is not compulsory for the client application to make this check before selecting a network SCF and signing a service agreement to use an instance of the SCF. If the accessCheck operation confirms that the client application has permission to use a specific SCF feature, then this feature should be available to the client application when using the SCF instance. The Home Environment may include the results of the accessCheck as part of the service agreement, that is signed before using an SCF instance, thereby assuring the client application that the SCF features will be available.

The selectService operation is used to identify the SCF that the client application wishes to use. A list of service properties initialises the SCF, and an SCF token is returned. The client application and Home Environment must sign a copy of the service agreement to confirm the use of the SCF. The framework invokes signServiceAgreement operation on the client applications’s Access callback interface with the service agreement text to be signed. The client application uses its digital signature key to sign the agreement text, and return the signed text to the framework. The client application then calls the signServiceAgreement operation on the OSA Access SCF. . The framework signs the agreement text, retrieves a reference to a network manager interface for the selected SCF (using the getServiceManager method defined in chapter 8), and returns this reference to the client application.
In addition, the OSA Access interface may be invoked by SCSs in the context of SCF registration, see section 8.1.

The OSA Access framework SCF is defined by a single interface class, which consists of the following methods.

Method
obtainInterface ()

This method is used to obtain other framework SCFs. The client application uses this method to obtain interface references to other framework SCFs. (The obtainInterfacesWithCallback method should be used if the client application is required to supply a callback interface to the framework.)

Direction
Application to network

Parameters
interfaceName

The name of the framework SCF to which a reference to the interface is requested.

Returns
fwInterface

This is the reference to the SCF interface requested.

Errors
INVALID_INTERFACE_NAME

Returned if the interfaceName is invalid.

Method
obtainInterfaceWithCallback ()

This method is used to obtain other framework SCFs. The client application uses this method to obtain interface references to other framework SCFs, when they are required to supply a callback interface to the framework. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Direction
Application to network

Parameters
interfaceName

The name of the framework SCF to which a reference to the interface is requested.

appInterface

This is the reference to the client application interface, which is used for callbacks. If an application interface is not needed, then this method should not be used. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Returns
fwInterface

This is the reference to the SCF requested.

Errors
INVALID_INTERFACE_NAME

Returned if the interfaceName is invalid.

Method
accessCheck()

This method may be used by the client application to check whether it has been granted permission to access the specified SCF. The response is used to indicate whether the request for access has been granted or denied and if granted the level of trust that will be applied. The securityModelID and the relevant securityLevel are available as part of the registration data for the SCF.

securityModelID:

The identity of the specific Security Model that is to be used to define a set of appropriate policies for the SCF that can be used by the framework to determine access rights. The model may include: blanket permission; session permission or one shot permission. A number of security models will be stored by the framework, and referenced by the access control module, according to the security model identifier of the SCF.

securityLevel:

The trust level required by the SCF for granting access. The Security Level is used by the framework’s access control module when it checks for access rights.

Direction
Application to network

Parameters
securityContext

A context is a group of security relevant attributes that may have an influence on the result of the accessCheck request.

securityDomain

The security domain in which the client application is operating may influence the access control decisions and the specific set of features that the requestor is entitled to use.

group

A group can be used to define the access rights associated with all clients that belong to that group. This simplifies the administration of access rights.

serviceAccessTypes

These are defined by the specific Security Model in use but are expected to include: Create, Read, Update, Delete as well as those specific to SCFs.

Returns
serviceAccessControl

This is a structure containing the access control policy information controlling access to the SCF, and the trustLevel that the Home Environment has assigned to the client application. It consists of

· policy: indicates whether access has been granted or denied. If granted then the parameter trustLevel must also have a value.

· trustLevel: The trustLevel parameter indicates the trust level that the Home Environment has assigned to the client application.

Errors

Method
selectService ()

This method is used by the client application to identify the network SCF that the client application wishes to use.

Direction
Application to network

Parameters
serviceID

This identifies the SCF required.

serviceProperties

This is a list of the properties that the SCF should support. These properties (names and values) are used to initialise the SCF instance for use by the client application.

Returns
serviceToken

This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain operator specific information relating to the service level agreement. The serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken will return an error code (INVALID_Service_TOKEN). Service Tokens will automatically expire if the client or framework invokes the endAccess method on the other's corresponding access interface.

Errors
INVALID_SERVICE_ID

Returned if the serviceID is not recognised by the framework

INVALID_SERVICE_PROPERTY

Returned if a property is not recognised by the framework

Method
signServiceAgreement()(application to network)
This method is used by the client application to request that the framework sign an agreement on the SCF, which allows the client application to use the SCF. If the framework agrees, both parties sign the service agreement, and a reference to the manager interface of the SCF is returned to the client application.

Direction
Application to network

Parameters
serviceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the SCF instance requested by the client application.

agreementText

This is the agreement text that is to be signed by the framework using the private key of the framework.

signingAlgorithm

This is the algorithm used to compute the digital signature.

Returns
signatureAndServiceMgr

This is a reference to a structure containing the digital signature of the framework for the service agreement, and a reference to the manager interface of the SCF:

· The digitalSignature is the signed version of a hash of the service token and agreement text given by the client application.

· The serviceMgrInterface is a reference to the manager interface for the selected SCF.

Errors
INVALID_SERVICE_TOKEN

Returned if the serviceToken is not recognised by the framework

Method
signServiceAgreement()(network to application)
This method is used by the framework to request that the client application sign an agreement on the SCF. It is called in response to the client application calling the selectService() method on the Access SCF of the framework. The framework provides the service agreement text for the client application to sign. If the client application agrees, it signs the service agreement, returning its digital signature to the framework.

Direction
Network to application

Parameters
serviceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the SCF instance to which this service agreement corresponds. (If the client application selects many SCFs, it can determine which selected SCF corresponds to the service agreement by matching the service token.)

agreementText

This is the agreement text that is to be signed by the client application using the private key of the client application.

signingAlgorithm

This is the algorithm used to compute the digital signature.

Returns
digitalSignature

The digitalSignature is the signed version of a hash of the service token and agreement text given by the framework.

Errors

Method
terminateServiceAgreement()(application to network)
This method is used by the client application to terminate a service agreement for the SCF.

Direction
Application To Network

Parameters
serviceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated.

terminationText

This is the termination text describes the reason for the termination of the service agreement.

digitalSignature

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement().The framework uses this to check that the terminationText has been signed by the client. If a match is made, the service agreement is terminated, otherwise an error is returned.

Returns

Errors

Method
terminateServiceAgreement() (network to application)

This method is used by the framework to terminate a service agreement for the SCF.

Direction
Network to application

Parameters
serviceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated.

terminationText

This is the termination text describes the reason for the termination of the service agreement.

digitalSignature

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses this to confirm its identity to the client. The client can check that the terminationText has been signed by the framework.

Returns

Errors

Method
endAccess()

The endAccess operation is used to end the client application’s access session with the framework. The client requests that its access session be ended. After it is invoked, the client application will not longer be authenticated with the framework. The client application will not be able to use the references to any of the framework SCFs gained during the access session. Any calls to these SCF interfaces will fail.

Direction
Application To Network

Parameters

Returns

Errors

Method
terminateAccess ()

The terminateAccess operation is used to end the client application’s access session with the framework (e.g. this may be done if the framework believes the client application is masquerading as someone else. Using this operation will force the client application to re-authenticate if it wishes to continue using the framework SCFs.)

After terminateAccess() is invoked, the client application will not longer be authenticated with the framework. The client application will not be able to use the references to any of the framework SCFs gained during the access session. Any calls to these interfaces will fail.

Direction
Network to application

Parameters
terminationText

This is the termination text describes the reason for the termination of the access session.

signingAlgorithm

This is the algorithm used to compute the digital signature.

digitalSignature

This is a signed version of a hash of the termination text. The framework uses this to confirm its identity to the client. The client can check that the terminationText has been signed by the framework.

Returns

Errors

6.2 Discovery

The discovery SCF consists of a single interface class. Before a network SCF can be discovered, the client application must know what “types” of SCFs are supported by the Framework and what “properties” are applicable to each SCF type. The listServiceType() method returns a list of all “SCF types” that are currently supported by the framework and the “describeServiceType()” returns a description of each SCF type. The description of SCF type includes the “SCF-specific properties” that are applicable to each SCF type. Then the client application can discover a specific set of registered SCFs that belong to a given type and possess the desired “property values”, using the “discoverService() method.

Once the HE-VASP finds out the desired set of SCFs supported by the network, it subscribes (a sub-set of) these SCFs using the Subscription framework SCF. The HE-VASP (or the client applications in its domain) can find out the set of SCFs available to it (i.e., the SCFs that it can use) by invoking “listSubscriberServices()”.

The discovery SCF is invoked by the HE-VASP or client applications. In addition, the discovery interface may be invoked by SCSs in the context of SCF registration, see section 8.1. Its methods are described below.

Method
discoverService ()

The discoverService operation is the means by which a client application is able to obtain the IDs of the SCFs that meet its requirements. The client application passes in a list of desired properties to describe the SCF it is looking for, in the form attribute/value pairs for the properties. The client application also specifies the maximum number of matched responses it is willing to accept. The framework must not return more matches than the specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the specified maximum. The discoverService() operation returns a serviceID/Property pair list for those SCFs that match the desired property list that the client application provided.

Direction
Application to network

Parameters
serviceTypeName

The “ServiceTypeName” parameter conveys the required SCF type. It is key to the central purpose of “SCF trading”. By stating an SCF type, the importer implies the SCF type and a domain of discourse for talking about properties of SCF.

The framework may return an SCF of a subtype of the “type” requested. An SCF sub-type can be described by the properties of its supertypes.

desiredPropertyList

The “desiredPropertyList”parameter is a list of property name and property value pairs of properties that the discovered set of SCFs should satisfy. These properties deal with the non-functional and non-computational aspects of the desired SCF. The property values in the desired property list must be logically interpreted as “minimum”, “maximum”, etc. by the framework.

max

The “max” parameter states the maximum number of SCFs that are to be returned in the “ServiceList” result.

Returns
serviceList :

This parameter gives a list of matching SCFs. Each SCF is characterised by an SCF ID and a list of property name and property value pairs associated with the SCF.

Errors
ILLEGAL_SERVICE_TYPE

Returned of the string representation of the “type” does not obey the rules for SCF type identifiers

UNKNOWN_SERVICE_TYPE

Returned if the “type” is correct syntactically but is not recognised as an SCF type within the Framework

Method
listServiceTypes ()
This operation returns the names of all SCF types which are in the repository. The details of the SCF types can then be obtained using the describeServiceType() method.

Direction
Application to network

Parameters

Returns
listTypes

The names of the requested SCF types.

Errors

Method
describeServiceType()

This operation lets the caller to obtain the details for a particular SCF type.

Direction
Application to network

Parameters
name

The name of the SCF type to be described

Returns
serviceTypeDescription

The description of the specified SCF type. The description provides information about:

· the property names associated with the SCF,

· the corresponding property value types,

· the corresponding property mode (mandatory or read only) associated with each SCF property,

· the names of the super types of this type, and

· whether the type is currently enabled or disabled.

Errors
ILLEGAL_SERVICE_TYPE

Returned of the string representation of the “type” does not obey the rules for SCF type identifiers

UNKNOWN_SERVICE_TYPE

Returned if the “type” is correct syntactically but is not recognised as an SCF type within the Framework

Method
listSubscribedServices ()

Returns a list of SCFs so far subscribed by the HE-VASP. The HE-VASP (or the client applications in the HE-VASP domain) can obtain a list of subscribed SCFs that they are allowed to access.

Direction
Application to network

Parameters

Returns
serviceIDList

Returns a list of IDs of the SCFs subscribed by the HE-VASP.

Errors

8 OSA Internal API

The OSA internal API between framework and service capability servers supports registering of network service capability features, and permits the framework to retrieve a network SCF manager interface when an application is granted access to a network SCF.
8.1 OSA Access and Discovery

To support registration, the OSA Access and Discovery interfaces, as defined in chapter 6, shall be supported at the OSA internal API.

8.2 Registration of network service capability features at the framework

The Framework needs to know the Service Capability Features provided by the SCSs, in order to make them available to applications. For this purpose network service capability features have to be registered with the Framework, and they need to be registered in such a way that applications can discover them as specified in chapter 6.

Note: Framework and Service Capability Servers are located within the same trusted domain. Therefore no authentication mechanisms are required between them.

The following table gives an overview of the methods defined in this section and to which interfaces these methods belong.

Service Registration
Service Factory

registerService
getServiceManager

announceServiceAvailability

unregisterService

describeService

Table 1
Overview of Registration interfaces and their methods

8.2.1 Service Registration
The Service Registration interface provides the methods used for the registration of network SCFs at the framework.

Method
registerService()

The registerService() operation is the means by which a service capability feature is registered in the framework, for subsequent discovery by the applications. A serviceID is returned to the service capability server when a service capability feature is registered in the framework. The serviceID is the handle with which the service capability server can identify the registered service capability feature when needed (e.g. for withdrawing it). The serviceID is only meaningful in the context of the framework that generated it.

Direction
Network to network (service capability server to framework)

Parameters
serviceTypeName

This parameter identifies the SCF type and a set of named property types that may be used in further describing this service capability feature , i.e. it restricts what is acceptable in the servicePropertyList parameter.

servicePropertyList

This parameter is a list of property name and property value pairs. They describe the SCF being registered. This description typically covers behavioural, non-functional and non-computational aspects of the SCF. It allows for several versions with different descriptions of the same SCF, so that different applications may be allowed different levels of use of the same SCF.

SCF properties may be marked as “mandatory” or “readonly”. These property mode attributes have the following semantics:

mandatory – an SCF associated with this SCF type must provide an appropriate value for this property when registering.

readonly – this modifier indicates that the property is optional, but that once given a value, it may not be subsequently modified.

Some properties may be marked both “mandatory”and “readonly”. Specifying both modifiers indicates that a value must be provided and that it may not be subsequently modified. Examples of such properties are those which form part of a service agreement and hence cannot be modified by the SCS during the life time of the SCF.

Returns
serviceID

This is the unique handle that is returned as a result of the successful completion of this operation. It identifies the SCF as described in terms of properties, that is, as will be allowed to be used by a certain application. The SCS can identify the registered SCF when attempting to access it via other operations such as announceServiceAvailability(), etc. Applications are also returned this serviceID when attempting to discover an SCF of this type.

Errors
If the string representation of the serviceTypeName does not obey the rules for identifiers, then an ILLEGAL_SERVICE_TYPE exception is raised.

If the serviceTypeName is correct syntactically but the framework is able to unambiguously determine that it is not a recognized SCF type, then an UNKNOWN_SERVICE_TYPE exception is raised.

If the type of any of the property values is not the same as the declared type (declared in the SCF type), then a PROPERTY_TYPE_MISMATCH exception is raised.

If an attempt is made to assign a dynamic property value to a readonly property, then the READONLY_DYNAMIC_PROPERTY exception is raised.

If the servicePropertyList parameter omits any property declared in the SCF type with a mode of mandatory, then a MISSING_MANDATORY_PROPERTYexception is raised.

If two or more properties with the same property name are included in this parameter, the DUPLICATE_PROPERTY_NAME exception is raised.

Method
announceServiceAvailability()

The registerService() method described previously does not make an SCF discoverable. The announceServiceAvailability() method is invoked after the SCF's "service factory" is instantiated at a particular interface. This method informs the framework of the availability of a "service factory" for the previously registered SCF, identified by its serviceID, at a specific interface. This "service factory" is the entry point for subsequent use of the corresponding SCF, as previously described in terms of properties. After the receipt of this information, the framework makes the corresponding SCF (identified by the pair [serviceID, serviceFactoryRef]) discoverable.

Direction
Network to network (service capability server to framework)

Parameters
serviceID

The serviceID of the SCF that is being announced.

serviceFactoryRef

The interface reference at which the "service factory" of the previously registered SCF is available.

Returns

Errors
If the string representation of the serviceID does not obey the rules for SCF identifiers, then an ILLEGAL_SERVICE_ID exception is raised.

If the serviceID is legal but there is no SCF offer within the Framework with that ID, then an UNKNOWN_SERVICE_ID exception is raised.

Method
unregisterService()

The unregisterService() operation is used by the SCSs to remove a registered SCF from the framework. The SCF is identified by the serviceID, which was originally returned by the framework in response to the registerService() operation. After the unregisterService(), the SCF can no longer be discovered by applications.

Direction
Network to network (service capability server to framework)

Parameters
serviceID

The SCF to be withdrawn is identified by the serviceID parameter, which was originally returned by the registerService() operation.

Returns

Errors
If the string representation of the serviceID does not obey the rules for SCF identifiers, then an ILLEGAL_SERVICE_ID exception is raised.

If the serviceID is legal but there is no SCF offer within the Framework with that ID, then an UNKNOWN_SERVICE_ID exception is raised.

Method
describeService()

The describeService() operation returns the information about an SCF that is registered in the framework. It comprises the type of the SCF and the properties that describe this SCF. The SCF is identified by the serviceID parameter which was originally returned by the registerService() operation.

This operation is intended to be used between a certain framework and the SCS that registered the SCF, since it is only between them that the serviceID is valid. The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for example), and each getting a different serviceID assigned. Getting the description of these SCFs from the framework where they have been registered helps the SCS internal maintenance.

Direction
Network to network (service capability server to framework)

Parameters
serviceID

The SCF to be described is identified by the serviceID parameter, which was originally returned by the registerService() operation.

Returns
serviceDescription

This consists of the information about an offered SCF that is held by the Framework. It comprises the “type” of the SCF, and the properties that describe this SCF.

Errors
If the string representation of the serviceID does not obey the rules for SCF identifiers, then an ILLEGAL_SERVICE_ID exception is raised.

If the serviceID is legal but there is no SCF offer within the Framework with that ID, then an UNKNOWN_SERVICE_ID exception is raised.

Sequence Diagram

The sequence diagram in figure 11 demonstrates the registration of a new service capability feature, announcing the availability of a registered SCF to the framework, or deletion of an existing registered SCF from the framework, by the SCS.

The SCSs can register only those SCFs, which are supported by the framework (i.e., the corresponding SCF types are supported in the framework). The SCF registration function is supported by the Service Registration interface of the framework. The SCS obtains the reference to the Service Registration interface of the framework by invoking obtainInterface() on the OSA Access interface of the framework. The SCS may first obtain a list of SCF types supported by the framework by invoking listServiceTypes() on the discovery SCF and then obtain a description of a given SCF type by invoking describeServiceType(). Once the supported SCF types and their description (i.e., the SCF properties applicable to each type) are obtained, the SCS can perform SCF registration.

SCF registration is a two-step process, after which a certain version of an SCF, characterised by a serviceDescription, is assigned a serviceID for identification purposes, and a reference to a service factory interface as a first entry point for applications.

· As a first step the SCSs invokes registerService() method on the Service Registration interface by giving the SCF type name and the values of the SCF properties. The framework returns a serviceID, which uniquely identifies the registered SCF within the framework.
· The second step is the instantiation of the SCF at an interface that will be registered in the framework together with its corresponding serviceID. This implies that the SCF in now available for use. The SCSs or the SCF itself invokes announceServiceAvailability() on the framework to announce the availability of the SCF identified by its serviceID at a particular interface. The annouceServiceAvailability() method may associate the serviceID either with the actual SCF interface or with the interface of the SCF manager (to achieve location transparency).
An SCF may be withdrawn from the domain by an SCS by invoking an unregisterService() on the Service Registration interface. The SCF is identified by the serviceID, which was originally returned by the framework after registration. At any time an SCS can obtain a description of the SCFs registered by it through the describeService() method.

[image: image8.wmf]SCS

OSA Access

Discovery

obtainInterface()

listServiceTypes()

describeServiceType()

ServiceRegistration

registerService()

describeService()

unregisterService()

announceServiceAvailability()

obtainInterface()

Figure 11 SCF Registration

8.2.2 Service Factory

The Service Factory interface allows the framework to get access to a manager interface of a network SCF. It is used during the signServiceAgreement, in order to return an SCF manager interface reference to the application. Each SCF has a manager interface that is the initial point of contact for the network SCF. E.g., the call control SCF uses the Call Manager interface.

Method
getServiceManager()

This method returns an SCF manager interface reference for the specified application. Usually, but not necessarily, this involves the instantiation of a new SCF manager interface.

Direction
Network to network (framework to service capability server)

Parameters
application
Specifies the application for which the SCF manager interface is requested.

Returns
serviceManager
Specifies the SCF manager interface reference for the specified application.

Errors
-

_1012893370.doc

framework

User Location

Call control

HLR

CSE

WGW

WPP

Servers

E.g. Location server

 MExE server

 SAT server

Service capability server(s)

Interface

class

OSA interface

Open

Service

Architecture

discovery

Application

Application

server

_1019912582.doc

framework

User Location

Call control

HLR

CSE

WGW

WPP

OSA internal API

Servers

E.g. Location server

 MExE server

 SAT server

Service capability server(s)

Interface

class

OSA API

Open

Service

Architecture

discovery

Application

Application

server

_1019980225.doc

SCS

OSA Access

Discovery

obtainInterface()

listServiceTypes()

describeServiceType()

ServiceRegistration

registerService()

describeService()

unregisterService()

announceServiceAvailability()

obtainInterface()

_997805625.doc
How to create a CR
Michael Sanders, 3GPP support team, (last updated 2/09/99)

1)
Open the CR cover sheet with MS Word 97. The lastest version of the CR coversheet can be found at:

ftp://ftp.3gpp.org/information/3gCRF-??.DOC

2)
Fill out all areas that are relevant on the CR cover sheet - only the areas that have yellow shading shall be filled out. See Annex A of these instructions for further detail.

3)
Open the specification to which you wish to make a change. It is very IMPORTANT to ensure that you are using the latest version of the specification to make the change. The latest versions of all approved 3G specifications is located at:

for the 3GPP: ftp://ftp.3gpp.org/specifications/ for SMG: http://docbox.etsi.org/tech-org/document/smg/specs

Do a "save as" using a file name related to the tdoc number (e.g. T3-99123.DOC).

4)
If the formatting looks incorrect (most easily noticed by the fact that there is no space between paragraphs), it may be because you do not have the correct document sheet in your MS Word style directory. All 3GPP specification use the style sheet 3GPP_70.DOT. This can be downloaded from:

ftp://ftp.3gpp.org/information/3gpp_70.dot

5)
Go to the beginning of the heading of the first subclause which you want to change. Press <CTRL><SHIFT><HOME> to select everything before that point and delete it.

6)
Switch to the window in MS word that contains your CR cover sheet and do a <CTRL>A <CTRL>C to select and copy the entire sheet (including the section break at the end). Switch back to the other window with the specification to be changed and paste it in.

7)
Between group of changed pages in the CR, insert a section break (insert / break / next page/)

8)
When all the changes have been made (using the "tools / track changes" feature of MS Word 97), the headers and page number need to be corrected other the headers will contain an error message like "error, reference not found". You can fix this by changing to page layout mode (view / page layout) to see the headers. Then, go to the menu item "view / header and footer", select the frame that contains the error message(s) ini the header and delete them (there are normally 2). Do not delete the page number in the middle. On the left side, write the spec name and current version number For example, "3G TS 21.111 version 3.0.0 (1999-04)". Go back to normal view.

9)
For each group of changes, insert the correct starting page number. The number should be that which is a clean unmodified specification. It is only a guide to the reader only and so they can be +/- 1 page number wrong. Insert the page number using the following method. Go to the line following the first section break in your CR. Choose the menu item insert / page number / format / start at and insert the correct starting page number for that group of changes. click "OK" and then "CLOSE" (don't press "OK" at this last step). Repeat this step for each section break.

10)
When you have finished making all changes, go to "tools / track changes / highlight changes" and uncheck the "track changes while editing" box, otherwise the page numbers in the headers will be difficult to read. Make sure that the two other options in this box (highlight changes on screen" and "highlight changes in printed document" are both maked "X".

Examples of expressions of prevision in 3GPP specifications

To ensure that everybody else understands your proposed chnaged the same way that you do, it is very important to keep to the following rules:

SHALL: To be used to indicate a requirement. e.g. "The ME shall reset the USIM" is correct Do not use "The ME resets the USIM" or "the ME must reset the USIM"

SHOULD: To be used to indicate recommendation. i.e. if, among several possibilities one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action is deprecated but not prohibited.

MAY: To be used to indicate permission. To be used instead of phrases such as "is permitted", "is allowed" or is permissible". The opposite of "may" is "need not".

CAN: To be used to indicate possibility and capability. To be used instead of phrases such as "be able to", "there is a possibility of" or "it is possible to".

A more detailed guide to the 3GPP drafting rules can be found on the 3GPP server at:

ftp://ftp.3gpp.org/information/drafting-rules.pdf

ANNEX A
The CR cover sheet

This annex provides further information on how to fill out the cover sheet of a CR.

The header:

a)
The header, including the TSG or Working Group, the tdoc number (normally obtinaed from the 3GPP support team) and the meeting location and date.

The title box:

b)
The change request number. This is a 3 digit number and is allocated by the 3GPP support team project manager of the relevant WG. For GSM specifications, it is prefixed with an "A"

c)
The 3G or GSM specification number (e.g. 21.111 for 3G or 12.05 for GSM).

d)
The TSG or SMG plenary meeting to which this CR will be submitted to if it gets agreed at the WG meeting.

e)
for approval/for information: one box only shall be marked with an "X"

Proposed change affects:

f)
At least one box shall be marked with an "X"

Source:

g)
The company name of the author of the CR. If the CR has already been agreed at a Working groups or sub working group, meeting, the subgroup name (and Tdoc number) should be used instead.

Subject:

h)
One line (only) of concise text that describes the subject of the CR. Details should be put under "reason for change"

good examples:
"Clarification to FETCH command"

"Alignment of operation and parameter names"

recently used

bad examples:
"correction"

"editorial correction"

"correction to TS xxx.yy"

"various improvements"

Work item:

h)
The name of the 3G work item for which the CR is relevant.

Category and release:

i)
Choose one category only

Reason:

j)
This should be 1 to 10 lines of text that describes in further detail the reasons why the change is necessary and how the change is done.

Clauses Affected:

m)
Each subclause that is affected by the change should be listed here. New subclause number can be followed by " (new) ".

Other specs affected:

n)
Other 3G core specifications: to be used if the CR is linked to a CR for another 3G specification.
Other 2G core specifications: to be used if a CR is also needed for a GSM or other 2G specification.

MS test specifications: to be used if a change is needed to the MS test specifications.

BSS test specifications: to be used if a change is needed to the base station test specifications.

O&M specifications: to be used if a change is needed to O&M specifications.

When listing other CRs in part n) use, for example, the form "21.111-CR001" or "12.05-A123"

How to create a CR for 3G or SMG specifications.

File location: http://ftp.3gpp.org/information/3gCRF-??.doc

