

SA WG2 Temporary Document
Page 2

SA WG2 Meeting #128-BIS	S2-187745188942
Aug 20 – Aug 24 2018, Sophia-Antipolis, FR 	
Source:	Oracle, Verizon, Cisco, AT&T
Title:	Distributed service framework
Document for:	Approval
Agenda Item:	6.19
Work Item / Release:	FS_eSBA / Rel-16
Abstract of the contribution: This contribution proposes a distributed service framework for 5GC.
[bookmark: _Toc462478989]1 Introduction
This document enhances solution #4, Distributed 3GPP Aware Service Framework. Specifically, iIt adds aspects of Network Slices and roaming. In addition, it resolves Editor Notes.
2 Proposal
This document proposes enhancements to solution #4, Distributed 3GPP Aware Service Framework. This solution addresses key issue #3, “Improvements to service framework related aspects” to TR 23.742.
* * * Start of Change * * *
[bookmark: _Toc520098697]6.4	Solution 4: Distributed 3GPP Aware Service Framework
Service framework is a set of common services which are not part of any business logic but can be used by any business logic. It consists of common services like Discovery, Authorization, Overload Control, Security, etc.
This solution is backward compatible with Rel-15 SBA.
The service framework proposed here will be distributed across multiple data centers/hosts.
This solution also addresses key issue 5 on backward compatibility.
[bookmark: _Toc520098698]6.4.1	Introduction
This solution addresses key issues 3 "Improvements to service framework related aspects".
[bookmark: _Toc520098699]6.4.2	High level description
This clause proposes a framework that is based on R15 SBA with some possible R16 enhancements and is designed as a service framework to enable inter service communication in a consistent and uniform way.
The business logic and the service framework are decoupled. A service consists of business logic which can be independently configured, deployed and scaled. The service framework contains a set of common services such as service registration, discovery, authorization, routing control, etc. Service Framework may be realized in an operator network using various mechanisms and could support various models of distribution and connectivity with the business logic. However, the services functions provided by the framework and implementation aspects of the framework are not intended to be defined by 3GPP. What may be defined by 3GPP, if required, are certain requirements around functionsservices provided by the service framework (e.g. an overload control algorithm).
The Service Framework will have an adaptation layer, which is 3GPP aware, and which is thus able to identify and select a specific instance of NFselect a producer based (among other considerations) on 3GPP info. based (among other considerations) on 3GPP information provided by the 3GPP Business Logic. The Business Logic always communicates with the Service Framework via the adaptation layer service adaptor using the defined SBI service messages. The service adaptor may consume or modify the message in the process of delivering it based on configuration and the Service Framework functionality. The service adaptor can be configured as an HTTP outbound proxy such that all messages sent from a consumer or producer goes through the service adaptor. Note that the service adaptor functionality can be realized by various models of distribution and connectivity to ensure it is not a bottleneck or single point of failure.
Examples of capabilities that could be supported by Service Adaptor are:
· Utilization of 3GPP Information Elements in HTTP headers and JSON content in performing discovery, selection, load balancing, prioritization etc.
· Adaptation to framework implementation
· Supports distributed multi-host/multi-datacentre architecture
The Service Framework should be capable of performing transparent routing or non-transparent routing. In the transparent routing mode, the service framework routes messages between consumers and producers without modifying identities/URIs used to locate corresponding resources. In this case, such identities/URIs are assumed to be routable between consumers and producers. In the non-transparent mode, the service framework may modify identities/URIs used by consumers and producers to locate corresponding resource for the purpose of hiding such information from recipients (topology hiding) or to transform non-routable identities/URIs to routable ones.
API revisions that may be performed as part of Rel-16 shall facilitate presence and functioning of a Service Framework. Considerations such as placing of information related to routing, discovery, priority etc. in headers vs. content shall take into account presence of Service Framework. Similarly, authorization and authentication aspects shall take into account the presence of Service Framework. The service framework introduction shall ensure backward compatibility with Rel-15 services.
Business logic is only responsible for the processing of business logic, and does not need to care about service discovery. When there is a service invocation request, the request will be sent to the service framework (as an outbound proxy).
The interactions between services across the service framework follow the SBA defined HTTP/2 based interface. This includes the interactions with the NRF.
The service framework forwards a request from a source business logicone service to the target business logicanother service.
Figure 6.4.2.1 below illustrates the service framework and its interaction with the business logic of the 3GPP NF.

Figure 6.4.2-1: Distributed Service Framework of eSBA
To support the backward compatibility with R15 the NRF can be used along with Service Framework. R15 NFs can continue to interface with R15 NRF and NRF can proxy the message to via the Service Framework, including performing the selection of a service producer instance. However, in order to fully achieve the separation of business logic from the common service framework, a key part of service producer selection logic which has been included in the service consumer (in release 15) should be moved to the Service Framework.
Follows are some of the key functionalities, which the service framework supports:
Service registration management, Service discovery management, Service authorization management, Load balancing, Overload control and more.
Editor's note:	Additional services provided by the service framework such as failover handling, retries, etc. are FFS.

[bookmark: _Toc520098683]6.4.2.1	Roaming architecture
The following figure illustrates the architecture in the roaming case:

Figure 6.4.2.1-1: Roaming architecture
The SEPP (Security Edge Protection Proxy) functions as defined in 23.501. It communicates with the Service Framework via the Service Adaptor using the 3GPP SBIs.
The interactions between NFs/services and the SEPP for roaming procedures are handled by the service framework: the service framework sends messages to the SEPP when they are intended for another PLMN and sends messages received by the SEPP from another PLMN to the appropriate internal NF consumer/producer.

6.4.2.2	Network slicing aspects
The Service Framework based on operator preferences may get deployed at three possible levels: PLMN level, slice common level, slice level. Figure 6.4.2.2-1 below illustrates a deployment option where each slice has its own Service Framework. This design adheres to slice isolation principles, simplifies the service framework logic, and enables the operator to implement different types of frameworks per slice. The PLMN level NFs such as the AMF, UDM and NSSF are viewed in this regard as being located in a special type of “slice”, and thus use their own Service Framework. In this deployment option, Service Frameworks will need to communicate with each other to convey messages between NFs/services served by different Service Frameworks.
NOTE 1: How different Service Framework instances discover each other is outside of the scope of 3GPP, i.e. this is similar to how different instances of NRFs in discover each other in Release 15.

Figure 6.4.2.2-1: Service Framework deployed in NS Level

Figure 6.4.2.2-2 below illustrates a deployment option where a Service Framework is deployed in a slice common level, i.e. it is shared across multiple slices. This design enables visibility of the Service Framework to multiple slices, and may be more suitable to deploy than a slice level Service Framework to minimize the number of service frameworks when multiple slices have similar characteristics, and thus having a common logical service framework can simplify the deployment model. In this deployment model, the PLMN Level NFs such as the AMF, UDM, NSSF, may still use their own Service Framework.
NOTE 2: How different Service Framework instances discover each other is outside of the scope of 3GPP, i.e. this is similar to how different instances of NRFs in discover each other in Release 15.

Figure 6.4.2.2-2: Service Framework deployed in an NS-Common Level

Figure 6.4.2.2-3 below illustrates a deployment option where a Service Framework is deployed in a PLMN level, i.e. all NFs in the PLMN (including those inside a slice) communicate via a common logical Service Framework (which can be deployed as a distributed framework). This design enables visibility of the Service Framework to the entire core, and may be simpler to deploy than a slice level Service Framework. In this deployment option, there is no need for an inter service framework communication.

Figure 6.4.2.2-3: Service Framework deployed in a PLMN Level

[bookmark: _Toc520098700]6.4.3	Services and illustrated Procedures
[bookmark: _Toc520098701]6.4.3.1	Service Registration/Update/Deregistration
According to TS 23.502 [3] clause 4.1s7, a Rel-15 NF service producer, e.g. SMF instance, registers itself by sending an Nnrf_NFManagement_NFRegister Request message (the NF profile of NF service consumerproducer) to the NRF to inform the NRF of its NF profile when the NF service consumer producer becomes operative for the first time.
Later on, the NF service consumer producer can update the NRF for changes in profile by sending the NRF an Nnrf_NFManagement_NF Update_Request message.
Finally, the NF service consumer producer can let the NRF know about its unavailability by sending the NRF an Nnrf_NFManagement_NFDeregister_Request message.
According to this solution, a Rel-15 NF service consumer producer becomes a Rel-16 NF business logic. Therefore in order to can register itself by, the Rel-16 business logic simply sending the Nnrf_NFManagement_NFRegister Request message to the service framework (i.e. to its HTTP outbound proxy).
The service framework can then decide whether to send the message to the NRF or whether to consume the message internally, and register the Rel-16 NF business logicservice producer within the service framework itself (e.g. in its own database).
If the service framework forwards the Request message to the NRF, the NRF processes the Request and returns a corresponding response to the service framework.
When service framework supports registry functions, it is up to implementation on how the internal framework service registry and NRF express themselves together as a logical NRF.
Some examples are listed below for illustration purposes:
1. Service registry is not implemented in the framework and NRF acts the sole service registry
2. Service registry framework itself provides NRF services
In general, all discovery and registration requests are expected to be routed through Service Framework and hence Service Framework can process such requests based on shared responsibilities between Service Framework and NRF.
The service framework then forwards the response back to the service producerbusiness logic.
If the service framework consumes the Request message internally, it processes the Request and returns a corresponding response to the service producer business logic.
[bookmark: _Toc520098702]6.4.3.2	Service Discovery
Service Discovery can be performed in either of the following two modes: Explicit Mode (supports backward compatibility) and Implicit mode.
In the Explicit mode, service discovery is done explicitly in the same way it is done in Rel 15. This is illustrated in TS 23.502 [3] clauses 4.17.4 and 4.17.5. The only difference in Rel-16 is that the business logicservice consumer will send the Nnrf_NFDiscovery_Request to the service framework (as its HTTP outbound proxy) instead of sending it directly to the NRF.
In the Implicit mode, service discovery is delegated to the service framework. This can be achieved by means of configuration,i.e.. I.e. the business logicservice consumer can be configured to skip service discovery by simply sending the actual service request to the service framework. For example, AMF can be configured to send Npcf_AMPolicyControl_Create request to the service framework without going first through the procedure of service discovery.
The Implicit mode is an optional feature left for operator configuration and may not be backward compatible with R15.
Upon receiving the actual request from the business logicservice consumer, the service framework, if needed, performs the service discovery request on behalf of the business logicservice consumer. It consumes the service discovery response internally and performs service producer selectionuses the outcome to decide where to send the service request received from the service consumer. Some service invocation requests may require additional parameters added as headers or JSON payload to support service producer selection as previously defined for some NF. The service consumer is able to maintain the binding to the service producer by using the response URI included in the service producer response, so the Service Framework does not need to cache the producer selection for each request.
[bookmark: _Toc520098703]6.4.3.3	Service Request/Response
As described in clause 6.4.2, the service framework can be defined as an HTTP outbound proxy of a business logicservice consumer. Based on that, any request of a source business logicservice consumer is simply forwarded to the service framework as is. The service framework can then apply any special processing (eg Load balancing) and forward the request to the target business logicservice producer. The service logic will send all the information elements (e.g S-NSSAI, DNN, SUPI etc) in the service request.
Based on normal HTTP routing, the response from the target business logicservice producer will be returned to the service framework. The service framework will then match the response with its original request and accordingly will forward the response back to the source business logicservice consumer.
[bookmark: _Toc520098704]6.4.4	Impacts on existing Services and Interfaces
Editor's note:	Further details regarding impacts are FFS.
This distributed service framework is compatible with R15 and extends the NRF based service framework.
The R15 consumer is not aware of an R16 service framework existence configured for explicit mode, other than have it configured as its HTTP outbound proxy (which can be the case in Rel-15 as well when using an HTTP equivalent of DRA).
When the service framework is configured for explicit mode, the R16 consumer is not aware of a service framework existence, other than have it configured as its HTTP outbound proxy (which can be the case in Rel-15 as well when using an HTTP equivalent of DRA). When the service framework is configured for implicit mode, the R16 SBI may require updates based on the identification of parameters associated with service producer selection if those parameters are not already present in the message. The R16 SBI may require updates regardless of the presence of a service framework as other new functionality is introduced, so the updates to provide easy access to selection related parameters should not be a significant impact.
This may happen regardless of a presence of a service framework.
Editor's note: Clause 6.4.3.2 describes an implicit mode of a discovery, which is a mode in which service discovery is delegated to the service framework. In some cases the service request may need to include some extra parameters (e.g. DNN, SUPI) to enable the SF to perform the delegated service discovery. This has to be analysed across all services.

[bookmark: _Toc520098705]
6.4.5	Evaluation of the Solution
Editor's note:	This clause provides an evaluation of the solution.
End of changes
3GPP
SA WG2 TD

image1.emf
Service 1

(Business Logic 1)

Optional[NRF

(Business Logic)]

Svc Reg.

Management

Discovery Management

Authorization

Management

Load Balancing

Overload control

More services...

Service Framework

Service 2

(Business Logic 2)

Service n

(Business Logic n)

SBI

SBI SBI

SBI

Service

Adaptor

Microsoft_Visio_Drawing1.vsdx
Service 1
(Business Logic 1)
Optional[NRF (Business Logic)]
Svc Reg. Management
Discovery Management
Authorization Management
Load Balancing
Overload control
More services...
Service Framework
Service 2
(Business Logic 2)
Service n
(Business Logic n)
SBI
SBI
SBI
SBI
Service Adaptor

image2.emf
Service 1

(Biz Logic 1)

Svc Reg.

Management

More services...

Service Framework

SBI

SBI

Service

Adaptor

VPLMN

Service n

(Biz Logic n)

[NRF]

(Biz Logic)

SBI

Service 1

(Biz Logic 1)

Svc Reg.

Management

More services...

SBI

SBI

Service

Adaptor

Service n

(Biz Logic n)

[NRF]

(Biz Logic)

SBI

vSEPP

SBI

hSEPP

SBI

Service Framework

HPLMN

Microsoft_Visio_Drawing2.vsdx

Service 1
(Biz Logic 1)
Svc Reg. Management
More services...
Service Framework
SBI
SBI
Service Adaptor
VPLMN
Service n
(Biz Logic n)

[NRF]
(Biz Logic)
SBI
Service 1
(Biz Logic 1)
Svc Reg. Management
More services...
SBI
SBI
Service Adaptor
Service n
(Biz Logic n)

[NRF]
(Biz Logic)
SBI
vSEPP

SBI
hSEPP
SBI
Service Framework
HPLMN

image3.emf
SBI

SBI

Service 2

(Biz Logic 2)

Service n

(Biz Logic n)

Service Framework

Service 1

(Biz Logic 1)

Service 2

(Biz Logic 2)

Service n

(Biz Logic n)

Service Framework

Service 1

(Biz Logic 1)

Service 2

(Biz Logic 2)

Service n

(Biz Logic n)

Service Framework

Service 1

(Biz Logic 1)

PLMN Level

NW Slice 1

NW Slice 2

SBI

Microsoft_Visio_Drawing3.vsdx
SBI

SBI
Service 2
(Biz Logic 2)
Service n
(Biz Logic n)
Service Framework
Service 1
(Biz Logic 1)
Service 2
(Biz Logic 2)
Service n
(Biz Logic n)
Service Framework

Service 1
(Biz Logic 1)
Service 2
(Biz Logic 2)
Service n
(Biz Logic n)
Service Framework
Service 1
(Biz Logic 1)

PLMN Level

NW Slice 1
NW Slice 2
SBI

image4.emf
SBI

SBI

SBI

SBI

SBI

SBI

SBI

Service 2

(Biz Logic 2)

Service n

(Biz Logic n)

Service 1

(Biz Logic 1)

Service 2

(Biz Logic 2)

Service n

(Biz Logic n)

Service

Framework

Service 1

(Biz Logic 1)

Service 2

(Biz Logic 2)

Service n

(Biz Logic n)

Service Framework

Service 1

(Biz Logic 1)

PLMN Level

NW Slice 1

NW Slice 2

SBI

SBI

SBI

Microsoft_Visio_Drawing4.vsdx
SBI
SBI
SBI
SBI
SBI
SBI
SBI
Service 2
(Biz Logic 2)
Service n
(Biz Logic n)
Service 1
(Biz Logic 1)
Service 2
(Biz Logic 2)
Service n
(Biz Logic n)
Service Framework

Service 1
(Biz Logic 1)
Service 2
(Biz Logic 2)
Service n
(Biz Logic n)
Service Framework
Service 1
(Biz Logic 1)

PLMN Level

NW Slice 1
NW Slice 2
SBI
SBI
SBI

image5.emf
SBI

SBI

SBI

SBI

SBI

SBI

SBI

Service 2

(Biz Logic 2)

Service n

(Biz Logic n)

Service 1

(Biz Logic 1)

Service 2

(Biz Logic 2)

Service n

(Biz Logic n)

Service Framework

Service 1

(Biz Logic 1)

Service 2

(Biz Logic 2)

Service n

(Biz Logic n)

Service 1

(Biz Logic 1)

PLMN Level

NW Slice 1

NW Slice 2

SBI

Microsoft_Visio_Drawing5.vsdx

SBI
SBI
SBI
SBI
SBI
SBI
SBI
Service 2
(Biz Logic 2)
Service n
(Biz Logic n)
Service 1
(Biz Logic 1)
Service 2
(Biz Logic 2)
Service n
(Biz Logic n)
Service Framework

Service 1
(Biz Logic 1)
Service 2
(Biz Logic 2)
Service n
(Biz Logic n)
Service 1
(Biz Logic 1)

PLMN Level

NW Slice 1
NW Slice 2
SBI

