Error! No text of specified style in document.
3
Error! No text of specified style in document.

SA WG2 Meeting #128-Bis
S2-18xxxx
August 20-24, 2018, Sophia Antipolis
Source:
Nokia, Nokia Shanghai Bell

Title:
5GC Reliability Solutions

Document for:
Discussion/Approval

Agenda Item:
6.19

Work Item / Release:
FS_eSBA
Abstract of the contribution: This contribution proposes race condition and resolution for 5GC reliability related solutions. Furthermore, it proposes common principles and consequences of some solutions documented in the TR.
1
Discussion

We proposed to capture the following changes to TR 23.742.
*** Start Change ***

6.7
Solution 7: SBA with stateless and unsticky services

6.7.1
Introduction
This solution addresses key issues 4 "Architectural Support for Highly Reliable Deployments".
When the 5G system is deployed in the cloud, the overall reliability of the system shall be at least at the same level as non-cloud implementations / deployments. In a typical cloud environment, NFs or NF services may fail at any time and in general more frequently than traditional network nodes. For this reason, the 5G system shall be able to deal with the unexpected loss of NF instances / NF services instances in a way that avoids impact on the customer service or detrimental side effects on the network (e.g. signalling storms) when such failures occur.

Unexpected loss of NF instances/NF service instances leads to system and / or customer service impact when the failed instance has active bindings (e.g. tightly coupled UE-specific information) with other NF instances / NF service instances. This might require the standardisation of complex recovery mechanisms to return to normal operation while minimising end user service impact.

Such complex mechanisms would have to include the transfer of the failed instance's load / service contexts to other existing instances or to newly instantiated "replacement" NF / NF service instances. This may cause limitations to network automation, e.g. when:
-
Newly instantiated NFs / NF services that replace the failed instance need to be specifically configured to act as replacement for the failed instance.
-
Existing NFs / NF services need to be specifically configured to integrate the newly instantiated NFs / NF services as the replacement of the failed instance.
-
Existing NFs / NF services need to be specifically configured to take over for the failed instance.
-
Previously existing bindings and / or service contexts have to be restored and be moved to existing or the new instance(s).

It should be noted that the restoration of pre-existing bindings or service contexts might not be possible in many cases, i.e. the recovery procedure implies the loss of the bindings or service contexts.

In the following clauses, a solution is presented that avoids the above issues and does not require the specification of complex recovery procedures that would probably have to be specific per NF / NF service type and / or failure scenario.
6.7.2
High level description

6.7.2.1
Solution aspects

The solution proposed here contains two main aspects to address the above issues:
-
Specifying the NFs / NF services as "unsticky" so that long-living bindings between NF / NF service instances are avoided.
-
Specifying the NFs / NF services as "stateless" (separation of compute and storage resources), i.e. NF / NF service instances store state / service context information in an external storage layer (e.g. UDM/UDR) when the state / service context is stable (e.g. at the completion of a transaction).
Thereby, failed instances can effortlessly be replaced by newly instantiated or already existing ones, which can then promptly recover the stored state / service context from the storage layer when and as needed.

6.7.2.2
Issues related to long-living bindings between NFs / NF services

Today the UE gets assigned serving NFs (e.g. based on the UE's location). The UE will continue to be served by these NF instances until a trigger to re-allocate a serving NF occurs (e.g. UE moves out of the service area of its current serving NF instance(s)). Thereby bindings are created between the UE and its serving NF instances, and orderly re-bindings (i.e. change of serving NF instance) can only occur by system procedures (e.g. mobility) specified in 3GPP.

In the Rel-15 5GC, serving instances of AMF, SMF, SMSF and PCF are selected per UE. This creates UE specific bindings between the selected AMF, SMF, SMSF and PCF NF instances.

Furthermore, the identities of the serving NFs are stored in the UDM/UDR, which creates another set of bindings in the 5GC.

Loss of any of the UE's serving instances destroys the associated bindings and thereby breaks the UE's service context environment in the network, causing the correlated customer service to fail.

In a cloudified 5G system, a long-living binding to a dedicated NF or NF service instance always means a long-living binding to a dedicated SW instance that represents the NF / NF service. Consequently, the above system and service impact would occur any time a SW instance is lost (e.g. due to HW failure or SW bug).

A summary of identified problems and challenges with long-living bindings in the cloud (non-exhaustive list) can be given as follows:
-
Complex scaling operations across the network:

-
when scaling out:
-
make the new instances known to other services to 'start using them', this leads to high configuration effort;

-
need to transfer bindings from already existing instances to new ones, this leads to the need for complex reallocation procedures.

-
when scaling in:
-
make other instances aware that the to-be-removed instance shall no longer be used;

-
transfer bindings to other instances or await orderly unbinding (e.g. UE detaches).

-
Need for load-(re)balancing:

-
with long-living bindings a load distribution for new bindings has to be done;
-
in case of unequal load of service instances a dedicated re-distribution of load, implying transfer of the binding(s), has to be done (additional load re-distribution mechanism needed).
-
in case of failure:

-
customer impact is likely in case of service instance failure;
-
reallocation (transfer of bindings) similar to scale-in but additional challenges need to be handled due to the "unexpected scale in";
-
complex configuration or complex automation procedures.
6.7.2.3
Issues related to stateful NFs

A typical NF / NF service is defined by its service logic (executed by a compute resource) and some service context data (located in a storage resource) on which the service logic is applied. Both the service logic and the service context data are well-defined in 3GPP specifications for the 5G system.

Historically, 3GPP network entities retain service contexts locally even when they are not used, i.e. not currently being subject to service logic processing.

If a NF / NF service instance holds unused service context information (e.g. a UE's MM context) internally (i.e. compute and storage resources are not separated) and the instance becomes unavailable (due to HW or SW failure) the service context data is lost and the customer's service is impacted.

Identified problems and challenges with NF / NF service internal storage of service context information in the cloud are similar to the issues listed in relation of long-living bindings, as also the service contexts need to be managed in a similar way to the bindings and case of scaling, load (re-)balancing or failure recovery. In addition, local storage of service contexts within NF instances / NF service instances limits the use of such context data by other entities as it is necessary to have knowledge about the location of the desired context data within a specific NF instance / NF service instance.

6.7.2.4
Solution Preconditions, Assumptions and Requirements

Preconditions:

-
the 5G system is made up a suitable set of 3GPP defined "modules" (NFs and/or NF services) that allow fast spin-up and teardown of instances.

Assumptions:

-
There exists a suitable storage layer that can be used by all relevant NF / NF service instances for storing and retrieving service context data.

-
The service context data stored in the storage layer corresponds to the 3GPP defined NF / NF service context data that a NF / NF service processes when applying its service logic.

-
Adequate reliability and availability of the storage layer can be achieved and is realised by methods internal to the storage layer.

NOTE 1:
the existence of NFs and/or NF services in Rel-16 is determined under key issue 1.

Requirements:

-
The service context information that is stored in the storage layer and necessary for multivendor interoperability between services shall be structured and standardised in 3GPP, similar to e.g. a UE context that is passed between AMFs during a relocation procedure. Deployment of the storage layer (e.g. UDR, UDSF) ensures that stored information is available as close to the requesting NF instance/NF service instance as needed.

NOTE 2:
This does not exclude any additional vendor-specific data being stored in the storage layer.

6.7.2.5
High-level Solution Architecture

It is proposed that:
-
Any available specific instance of a requested NF/NF service type within a slice or shared among available slices can handle an incoming message dedicated to that service, that means:
-
NF instance/NF service instances do not store other instance's IDs for sub-sequent requests.
-
Requests by service consumers do not contain NF instance/NF service instance IDs but only the type of the requested service.
-
How the specific NF instance/NF service instance that shall handle a particular request is selected or if and by who it needs to be selected, and what information to use in the selection process, depends on the inter-NF / NF service communication method (cf. key issue 3) and is out of scope of this solution.

NOTE 3:
NF/NF service type is a unique identification of the service, i.e. are different per optional feature set.

-
When the service context information reaches stable state it shall be stored in a storage layer external to the service instance; that means:
-
Any authorized service instance of the same or different type can access the service context data.
-
Any authorized 3rd party service may access that data.
Examples of service context information are:

-
Subscription -, policy -and application specific data.

-
Mobility management data.
-
Session/context data (related to user subscription and its UE session-, registration-and connection state).
-
standardized or exchanged as part of standardized NF service interfaces with other NFs. Represents a stable state, that can be recovered/re-created by a NF service in failure scenarios.

Dependencies to other solutions to key issues:
-
Solution 2 in the key issue 3 "Improvements to Service Framework" relies on the unstickiness and the statelessness of service instances (see clause 6.2.2.3 pre-condition).
6.7.2.5.1
NF instance/NF Service instance selection

Selection on NF instance/NF Service instance is subject of solution in 6.2.

6.7.2.5.2
Storage layer aspects

The storage layer is considered to be primary and only storage for stable context data and offers both to store opaque (vendor specific structured or unstructured) context data as well as standardized structured context data. The minimum context data that need to be standardized is determined by what data are required to support multi-vendor interoperability amongst NF services of same type.
On potential race conditions related to the storage layer:

-
Read operation of any context data in the storage layer is possible at any point in time and state of the NF service instances.

-
Update operations could e.g. lock the context data for time it is processed by a service instance. How and whether to do it should be left to the normative phase.

-
Whether race conditions during interaction of the storage layer and NF services instances can occur or not depends on how the services and procedures are defined and on the amount of overlapping (shared) context. These need to be addressed on a case by case basis during normative phase. Currently no such conditions have been identified.

NOTE:
race conditions can occur only as long as there is transient state within an NF service instance as described below. Race conditions cause by conflicting producer NF service instance selection by NF service consumers cannot occur because as per solution 2 NF service consumers do not select producer NF service instances (this is done by the service framework)

Regarding local knowledge of data:

Local knowledge of data in the sense of locally at the NF service instance is only required until a procedure is completed (i.e. while it has some transient state) and a stable state can be stored to the data layer. Storage layer is assumed to be a distributed database and it is up to implementation/a deployment issue how the synchronization between any instances of the storage layer is achieved.

Relation to network slicing:
In case of network slicing, an instance of the storage layer can either serve multiple network slices or be slice specific (based on operator deployment).
Editor's note:
How to handle timers and triggers for context stored in the storage layer and whether this is an internal storage layer functionality or a functionality of a separate service to be defined as part of modularization key issue is FFS.
6.7.3
Services and illustrated Procedures

Editor's note:
This clause describes services and related high-level procedures for the solution.

6.7.4
Impacts on existing Services and Interfaces

Editor's note:
Further details regarding impacts are FFS.

6.7.5
Evaluation of the Solution

Editor's note:
This clause provides an evaluation of the solution.

Following are the main principles of this solution:

· Set Concept - Equivalent to having a single set per network (deployment option: one set)

· State efficiency - Requires all service instances to be fully stateless beyond a single request/response

· Performance and efficiency - Storage layer data retrieval for each request received/processed.

· Storage layer - Segmented storage layer kept near NF/service set for better scalability and performance

· Service Instance compatibility in terms of functionality/features (Network Slice) supported - Assumes all service instances in a network to be equivalent and interchangeable

· SMF-UPF relationship - Requires full mesh of SMF and UPF within a network

· Race conditions are Spread across the network- could result in significant propagation delay when it is across DSFs and NF instances in a huge nationwide network.
*** Next Change ***

6.8
Solution 8: Support for highly reliable deployments

6.8.1
Introduction
To support highly reliable deployments enabling seamless replacement, addition or removal of services and new components without the need for reconfiguration of either running components or new components, separation of functional processing from state management is essential. Such an approach enables independent life cycle management as well as failover handling of NFs and Service Instances.

6.8.2
High-level Description

Editor's note:
This clause outlines solution principles, assumptions and high-level architectures, etc.

Externalisation of finalised transactions carried out during the execution of a procedure is essential towards enabling separation of functional processing from state handling. In addition, the Communication Service within the Service Framework, through which messages are carried, should support registration of entities and routing of messages resilient to failover and capable of operating even when life-cycle management operations are carried out. Such common service framework functionalities need to be added to the general SBA capability of 5GS:
-
To enable the use of stateless NF Services, it is proposed that relevant state information of finalised transactions may be pushed to a Shared Data Layer Service (e.g. the UDSF) and hence made available to other NF Services which require the specific data for further processing.

-
The Shared Data Layer Service is a repository where relevant state information may be stored and fetched as required.

-
The Communication Service within the Service Framework provides routing management aligned with the availability of new service instances and reactive to topology/service failures in short term range (i.e. ms range).

6.8.3
Services and Illustrated Procedures

6.8.3.1
Registration Services

NF services register to the Service Framework using the Service Framework Registration capabilities. E.g., using NRF. Registration through the Service Framework also enables NF Services to use the Service Framework Communication services.

Editor's note:
This clause describes services and related high-level procedures for the solution.

[image: image6.png]
Figure 6.8.3.1-1

1.
NF Service Instance consumer becomes operative for the first time.

2.
The NF Service Registers with the Service Framework and provides the service profile (e.g. Service Type and Service ID) the be used by the Service Framework for forwarding determination.

3.
The Service Framework stores the NF service information that enables routing to instances of a service.

4.
The Service Framework confirms successful registration.

6.8.3.2
Communication Services and Shared Data Layer

The Communication services allow the transport of messages across NF Services. Share Data Layer Services may be distributed and they may be accessed based on the Service Type, Network Slice and possible, specific users.

The Communication Services operates may operate on a single Slice or across multiple Network Slices. E.g., Using the Slice Selection Type.

[image: image2.emf]1. Incoming Request#1 from NF/Service consumer nNF Service XNF Service YService FrameworkShare Data Layer Service (e.g., eUDSF)3. SF_Routing_Incoming_Request4a. SF_RoutingReq5a. SF_RoutingReq7c.SF_Reouting4c. SF_Routing5c. SF_Routing7a. SF_RoutingReq8a. SF_Routing_Outgoing2. Determine NS Service Producer Endpoint (e.g., through NRF) and forward message6. Process Request for Service4b.Determine Service Producer Endpoint and forwards message5b.Determine Service Producer Endpoint and forwards message7b.Determine Service Producer Endpoint and forwards message8c. SF_Routing_Incoming_Request8b.Determine Service Producer Endpoint and forwards message9. Repeat steps 4-8

Figure 6.8.3.2-1

1.
The Service Framework receives a Request from a NF/NF Service requesting a particular Service (e.g., Session Establishment).
2.
The Service Framework determines the Endpoint of a NF Service instance capable of servicing the Request. The Service Framework may use the NRF to resolve the NF Service Instance Endpoint address.
3.
The Service Framework forwards the request the available Service Instance Endpoint. To achieve this, the Service Framework maintains a list of available NF Service Instances of a particular type, capable of servicing a request.
4.
a-c. The NF Service Endpoint then retrieves necessary context information from the Shared Data Layer and it locks the context to enable processing of data before any other NF Service can access the Context data.
5.
a-c. The Shared Data Layer acknowledges context locking and provides data information relevant to a specific service.
6,
The NF Service process the message for the NF service using the data information retrieved from the Shared Data Layer Service.
7.
a-c. The NF Service updates relevant data and it unlocks the context for use by another process.
8.
a-c. The NF Service forwards the result of the execution of a NF service through the Service Framework along with any relevant information carried in the message container.
9.
Steps 4-8 are used.
6.8.4
Impacts on existing services and interfaces

Editor's note:
This clause describes impacts to existing services and interfaces.

Relevant NF Services may expose and retrieve finalised transactions and its states for processing requests. These NF Services and its components have to register and de-register to the Registration and Discovery Service, within the Service Framework. This may be the same procedure as the NF Service to the NRF registering.

Services use the Communication Service within the Service Framework to route messages to the relevant Service Endpoint instance, without having to first retrieve its address from the NRF. The NRF functionality may be contained within the Service Framework.

6.8.5
Evaluation
Editor's note:
This clause provides an evaluation of the solution
Following are the main principles of this solution:

· Set Concept - Equivalent to having a single set per network (deployment option: one set)

· State efficiency - Requires all service instances to be fully stateless beyond a single request/response

· Performance and efficiency - Storage layer data retrieval for each request received/processed.

· Storage layer - Segmented storage layer kept near NF/service set for better scalability and performance

· Service Instance compatibility in terms of functionality/features (Network Slice) supported - Assumes all service instances in a network to be equivalent and interchangeable

· SMF-UPF relationship - Requires full mesh of SMF and UPF within a network

· Race conditions are Spread across the network- could result in significant propagation delay when it is across DSFs and NF instances in a huge nationwide network.

*** Next Change ***

6.10
Solution 10: NF/NF services Reliability

6.10.1
Introduction
In Rel-15, enablers were introduced for AMF reliability allowing also dynamic runtime load balancing and dynamic runtime load re-balancing. AMF Set was a key concept enabling scalability up to n AMFs within an AMF Set. We propose to introduce the Set concept also for other 5GC NFs and standalone 5GC NF Services that are introduced as part of this TR.

The Concept of NF/NF Services reliability should work irrespective of whether UDSF is deployed or not. Furthermore, concept of NF/NF Services reliability should work irrespective of whether UDSF is used as a primary storage or secondary storage.

6.10.2
High-level Description

It is proposed to introduce the concept of NF/NF Services Set for all 5GC NFs/NF Services. The NF/NF Services instances within a given NF/NF Services Set are expected to have access to the same storage layer (e.g. UDSF and when UDSF is deployed) or use backup NF instance by implementation specific means to share context amongst NF instances within the NF Set. Thus, in principle, any NF/NF Services instance, or one pair NF/NF Services instance within an NF/NF Services set should be able to process the UE transaction as it has access to UE context. The NF/NF Services instances within a given NF/NF Services Set share the following characteristics:

-
NF/NF Service instances support the same network slice(s). For instance, {NF/NF Service1, NF/NF Service2, NF/NF Service3} in a given Set supports the same IoT slice.

-
NF/NF Service instances may access to the same storage layer (e.g. UDSF and the UDSF is deployed) that is geographically close. For instance, {NF/NF Service1, NF/NF Service2, NF/NF Service3} in a given Set supporting the same IoT slice have access to the same UDSF instance. If the NF/NF service instances do not share the same storage layer, the UE contexts are stored in each NF/NF service instances, and backup in other NF/NF service instances within the same NF/NF service set.
-
NF/NF Service instances may also be geographically close to access to the same storage layer (e.g. UDSF and the UDSF is deployed).
-
Each NF/NF service instances may support one or more NF/NF service pointers. The NF/NF service instance pointer(s) that a NF/NF service instance supports are registered in NRF. The NF/NF service instance may add or remove its supported NF/NF service instance pointers registered in NRF during runtime load rebalancing.

-
If the NF/NF service instances have been assigned NF/NF service pointers, the NF/NF service instance allocates a NF/NF service instance pointer to a UE context during UE context establishment, and sends the NF/NF service instance pointer to peer NF/service instances.

Editor's note:
How long to keep the knowledge of NF/NF service instance pointer at peer NF/NF Service instance is FFS.
-
The peer NF/NF service instances may subscribe for the NF/NF service instance status change notification, when the status of NF/NF service instance has changed, e.g. NF/NF service instance pointer has been removed or added, a notification is sent to the peer NF/NF service instances.
-
If the peer NF/NF service instance has not subscribed to the NF/NF service instance status change notification, the peer NF/NF service determines that one NF/NF service pointer is not associated with the old NF/NF service instance when a rejection has been received from the old NF/NF service instance, or when the transmission of a transaction to old NF/NF service instance has been failure.

-
When the UE context is no longer served by the old NF/NF service instance, the peer NF/NF service selects a NF/NF Service instance from the same NF/NF Service Set if no backup NF/NF service instance is notified before.
-
If there is no NF/NF Service instance pointer associated with the UE Context, the peer (NF Service Consumer) NF/NF Service instance should be able to select any NF/NF service instance from NF/NF Service Set of NF Service Provider for forwarding a transaction targeted for a given UE, otherwise, the peer NF/NF Service instance selects a target NF/NF Service instance based on NF/NF service instance pointer associated with the UE context, which is the backup NF/NF service instance.

-
The Set of equivalent NF/NF Service Instances may be identified by a common "NF/NF Service Set ID".

Following characteristics apply for specific 5GC NFs that are specified in TS 23.501 [2]:

-
In case of SMF, SMFs within the SMF Set can access the same UPFs. This is to allow any SMF within the SMF Set to be selected when user plane traffic is ongoing for a given UE for a certain PDU Session. This is explained with an example below. In a certain network, not all SMFs are able to connect to all UPFs e.g. for domain reasons.

-
SMF1, SMF2, SMF3 - can connect only to UPF1, UPF2, UPF3.
-
SMF4, SMF5, SMF6 - can connect only to UPF4, UPF5, UPF6.
UE has PDU sessions with UPF1 as PDU Session Anchor; Now, if the SMFs have to be stateless and we want the ability to select any SMF for processing a transaction for a given UE/PDU Session, then it should be able to possible to select any of the SMFs but at the same time it needs to be ensured that they are selected from set of {SMF1, SMF2, SMF2}.

Editor's note:
the solution can be updated to adopt standalone NF/NF Services depending on the outcome of the architecture decided for FS_eSBA.

6.10.3
Illustrated Procedures

Editor's note:
This clause describes related high-level procedures for the solution.
6.10.4
Impacts on existing NFs, NF services and interfaces

Editor's note:
This clause describes impacts to existing services and interfaces.

6.10.5
Evaluation
Editor's note:
This clause provides an evaluation of the solution.

Following are the main principles and benefits of this solution:
· Set Concept - Allows multiple NF/service instance sets per network for deployment flexibility

· State efficiency - Service instances may keep state during a signaling flow (= temporary binding) if required, controlled by producer instance. Fully stateless otherwise. Temporary binding can be setup and released. Thus, the NFs receiving frequent UE transactions are state efficient considering performance efficiency.
· Performance and efficiency - Storage layer data retrieval once per transaction / procedure (signaling flow).

· Storage layer - Segmented storage layer kept near NF/service set for better scalability and performance

· Service Instance compatibility in terms of functionality/features (Network Slice) supported - Assumes all service instances in a set to be equivalent and interchangeable

· SMF-UPF relationship - Allows regional or other grouping of SMF and UPF instances

· Race conditions are limited to the instances within the SET, (the given DSF and the given SET).

· This solution includes solutions 7 & 8 as a special case / deployment option:
· Set can comprise of 1 to N instance, where N can be a huge number (even comprising of all instances deployed in the network as part of the set).
· This solution adds additional flexibility and optimizations for better performance and efficiency. Allows support for both state-ful (for signaling and perfomance efficiency in the middle of a procedure) and stateless (for better scalability and improved resiliency).
*** Next Change ***

6.11
Solution 11: 5GC Reliability

6.11.1
Introduction
In Rel-15, different concepts have been adopted for reliability in various NFs. Its proposed to provide further possibilities to enhance the reliability in Rel-16. This solution proposes to define a Services Instance Set concept that can support high reliability and also has potential to improve other aspects of the 5GC architecture.

The solutions for reliability should work irrespective of whether UDSF is deployed or not.

6.11.2
High-level Description

It is proposed to introduce the concept of Service instance Set for 5GC. The Service instances within a given Service instance Set are expected to have access to the same data sets in a data storage entity e.g. UDSF. Thus, in principle, any Service Instance within a Service Instance set should be able to process UE transactions as it has access to UE context.

Following are the key principles for Service Instance Sets:
-
A Set of the same service instances.

-
All Service instances in a Set can access the same data storage e.g. UDSF.

Editor's note:
How this relates to solution for key issue 1 is FFS.
6.11.3
Illustrated Procedures
Editor's note:
This clause describes related high-level procedures for the solution.
6.11.4
Impacts on existing NFs, NF services and interfaces

Editor's note:
This clause describes impacts to existing services and interfaces.

6.11.5
Evaluation
Editor's note:
This clause provides an evaluation of the solution.
Following are the main principles and benefits of this solution:

· Set Concept - Allows multiple NF/service instance sets per network for deployment flexibility

· State efficiency - Service instances may keep state during a signaling flow (= temporary binding) if required, controlled by producer instance. Fully stateless otherwise. Temporary binding can be setup and released. Thus, the NFs receiving frequent UE transactions are state efficient considering performance efficiency.
· Performance and efficiency - Storage layer data retrieval once per transaction / procedure (signaling flow).

· Storage layer - Segmented storage layer kept near NF/service set for better scalability and performance

· Service Instance compatibility in terms of functionality/features (Network Slice) supported - Assumes all service instances in a set to be equivalent and interchangeable

· SMF-UPF relationship - Allows regional or other grouping of SMF and UPF instances

· Race conditions are limited to the instances within the SET, (the given DSF and the given SET).
*** Next Change ***

6.12
Solution 12: 5GC Reliability – Resolution for Race condition
6.12.1
Introduction
This solution describes the potential race conditions that can occur due to solutions 8, 9, 10, 11 described in this TR along with potential resolution for such race conditions.
6.12.2
High-level Description

When the NF is stateless, multiple other NFs may try to send a UE specific message towards the stateless NF. This implies multiple other NFs can select a stateless NF instance (which has access to the same UE context via common storage layer e.g. UDSF). If such transactions and NF instance selection occur in parallel for processing a given UE transaction, then this results in a race condition. This is illustrated in the following call flow:

[image: image3]
Here is one possible resolution for the race condition detected above:

[image: image4]
6.12.3
Illustrated Procedures
Editor's note:
This clause describes related high-level procedures for the solution.
6.12.4
Impacts on existing NFs, NF services and interfaces

Editor's note:
This clause describes impacts to existing services and interfaces.

6.12.5
Evaluation
Editor's note:
This clause provides an evaluation of the solution.
*** End Change ***

3GPP

[image: image1.emf]NF ServiceService Framework4. Rsp: Register2. Req: Register3.Store Service Profile1. NF Service Instance becomes operative

[image: image5.png]_1590152692.doc

[image: image1.emf]NF ServiceService Framework4. Rsp: Register2. Req: Register3.Store Service Profile1. NF Service Instance becomes operative

NF Service
Service Framework
4. Rsp: Register
2. Req: Register
3.Store Service Profile

1. NF Service Instance becomes operative

1. Incoming Request#1 from NF/Service consumer n
NF Service X
NF Service Y
Service Framework
Share Data Layer Service (e.g., eUDSF)
3. SF_Routing_Incoming_Request
4a. SF_RoutingReq
5a. SF_RoutingReq
7c.SF_Reouting
4c. SF_Routing
5c. SF_Routing
7a. SF_RoutingReq
8a. SF_Routing_Outgoing
2. Determine NS Service Producer Endpoint (e.g., through NRF) and forward message
6. Process Request for Service
4b.Determine Service Producer Endpoint and forwards message
5b.Determine Service Producer Endpoint and forwards message
7b.Determine Service Producer Endpoint and forwards message
8c. SF_Routing_Incoming_
Request
8b.Determine Service Producer Endpoint and forwards message
9. Repeat steps 4-8

