

	
3GPP TSG-SA4 Meeting #103	S4-190468
 Newport beach CA, USA, April 8 – 12, 2019 											rev S4-190398
	CR-Form-v11.4

	CHANGE REQUEST

	

	
	26.347
	CR
	0007
	rev
	1
	Current version:
	16.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	

	

	Title:	
	New API providing the SA File

	
	

	Source to WG:
	Expway

	[bookmark: _GoBack]Source to TSG:
	S4

	
	

	Work item code:
	MC_XMB
	
	Date:
	19/03/2019

	
	
	
	
	

	Category:
	B
	
	Release:
	16

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	In CR 0002 of TS 26.348, for mission critical purposes, the SA File is returned to the content provider if the “Content Provider” announcement mode is used and the session is a download delivery session. Thereby, the content provider can signal the SA File to the UE application when new files can be received over MBMS.

The MBMS API lacks a way to let the application provide the SA file to the MBMS client, so that the MBMS client can know the delivery parameters of the files to be received.

	
	

	Summary of change:
	A new method is added in the File Delivery Application Service API so that the application can provide the SA File.

	
	

	Consequences if not approved:
	The MBMS API can not be used when the “Content Provider” announcement mode is used.

	
	

	Clauses affected:
	4.2, 6.2.1, 6.2.3.1, 6.2.3.x (new), 6.2.3.x.1 (new), 6.2.3.x.2 (new), 6.2.3.x.3 (new), 6.2.3.x.4 (new), 6.2.3.x.5 (new), 6.2.3.x.6 (new), 6.2.3.y (new), 6.2.3.y.1 (new), 6.2.3.y.2 (new), 6.2.3.y.3 (new), 6.2.3.y.4 (new), 6.2.3.y.5 (new), 6.2.3.y.6 (new), B.2

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

Page 1

[bookmark: _Toc532307015]***** First change *****
4.2	Network Architecture and MBMS User Services (Informative)
According to TS 26.346 [5], three distinct functional layers are defined for the delivery of an MBMS-based service:
1)	Bearers: Bearers provide the mechanism by which IP data is transported. MBMS bearers as defined in 3GPP TS 23.246 [4] and 3GPP TS 22.146 [2] are used to transport multicast and broadcast traffic in an efficient one-to-many manner and are the foundation of MBMS-based services. MBMS bearers may be used jointly with unicast PDP contexts in offering complete service capabilities.
2)	Delivery Method: When delivering MBMS content to a receiving application one or more delivery methods are used. The delivery layer provides functionality such as security and key distribution, reliability control by means of forward-error-correction techniques and associated delivery procedures such as file-repair, delivery verification. Three delivery methods are defined, namely download, streaming, transparent and group communication. The present document does not address group communication.
3)	User service: The MBMS User service enables applications. Different applications impose different requirements when delivering content to MBMS subscribers and may use different MBMS delivery methods.
MBMS User Service architecture is based on an MBMS client on the UE side and a BM-SC on the network side. Details about the BM-SC functional entities are given in figure 4 of TS 26.346 [5].
The BM-SC and UE may exchange service and content related information either over point-to-point bearers or MBMS bearers whichever is suitable. Among others, the following MBMS procedures are defined in TS 26.346 [5]:
-	User Service Discovery / Announcement providing service description material to be presented to the end-user as well as application parameters used in providing service content to the end-user.
-	MBMS-based delivery of data/content from the BM-SC to the UE over IP multicast or over IP unicast.
-	Associated Delivery functions are invoked by the UE in relation to the MBMS data transmission. The following associated delivery functions are available:
-	File repair for download delivery method used to complement missing data.
The service and content related information may also be directly transmitted by the content provider to the MBMS aware application and then forwarded by the MBMS aware application to the MBMS client.
***** Next change *****
[bookmark: _Toc532307030]6.2.1	Introduction
The File Delivery Application Service API provides MBMS Aware applications with interfaces to manage the reception of files delivered over File Delivery Application User Services. This API is intended to support applications that are running while files are being delivered through MBMS user services as well as applications that are not running to receive information on files received through an MBMS User service, for example as the user may have quit/exited the application.
In order to support applications that may not be currently running while files are being received, the MBMS client may keep received files for a period of time configured by the application, which includes means to collect received files even if the user does not actively interact with the application to consume the received files.
When the application is currently running and can collect the files received over MBMS User services, the MBMS client moves the files to the application space. It is ultimately the application's responsibility to manage the storage of requested files, especially the amount of storage to be used.
Any persistent storage of received files by the MBMS client is only intended to ensure that the received files are made available to the respective requesting application. Once files are moved/copied to the application space, the application is responsible for managing those files.
When the content provider use the “content provider” announcement mode (3GPP TS 29.116 [12]) for a file delivery session, the BM-SC provides the service announcement information to the content provider within a SA file, following the profile 1c (Annex L.3 of 3GPP 26.346 [2]). This SA file may be transmitted by the content provider directly to the MBMS Aware application. In such case, SA information may be provided to the MBMS client by the MBMS aware application.
The IDL for the File Delivery Application Service API is defined in clause B.2.

***** Next change *****
[bookmark: _Toc532307039]6.2.3.1	Overview
[bookmark: TAB_FD_METHODS]Table 6.2.3.1-1 provides an overview over the methods defined for the File Delivery Application Service API. Different types are indicated, namely state changes triggered by the MAA, status query of the MAA to the client, parameter updates as well as notifications from the client. The direction of the main communication flow between the MAA (A) and the MBMS client (C) is provided.
Table 6.2.3.1-1: Methods defined for File Delivery Application Service API
	Method
	Type
	Direction
	Brief Description
	Clause

	registerFdApp
	State change
	A -> C
	MAA registers a callback listener with the MBMS client
	6.2.3.2

	deregisterFdApp
	State change
	A -> C
	MAA deregisters with the MBMS client
	6.2.3.9

	startFdCapture
	State change
	A -> C
	Start download of files over file delivery service
	6.2.3.7

	stopFdCapture
	State change
	A -> C
	Stop download of files for the file delivery service
	6.2.3.13

	getFdActiveServices
	Status query
	C <-> A
	Get list of currently active services
	6.2.3.14

	getFdAvailableFileList
	Status query
	C <-> A
	Retrieves the list of files previously captured for the MAA
	6.2.3.12

	getFdServices
	Status query
	C <-> A
	Retrieves the list of File Delivery services defined in the USD
	6.2.3.4

	getFdDownloadStateList
	Status query
	C <-> A
	Retrieves the state of files pending download
	6.2.3.16

	getVersion
	Status query
	C <-> A
	the version of the File Delivery Application Service interface
	6.2.3.21

	setFdServiceClassFilter
	Update to parameter list
	A -> C
	MAA sets a filter on file delivery services in which it is interested
	6.2.3.6

	setFdStorageLocation
	Update to parameter list
	A -> C
	Sets the storage location to store the MAA downloaded files
	6.2.3.5

	registerFdResponse
	Response
	C -> A
	The response to the MAA service register API
	6.2.3.3

	fileAvailable
	Notification
	C -> A
	Notification to MAA when a new file is downloaded per MAA capture request
	6.2.3.8

	fdServiceListUpdate
	Notification
	C -> A
	Notification to MAA on an update of the available for file delivery services
	6.2.3.17

	fdServiceError
	Notification
	C -> A
	Notification to MAA when there is an error with broadcast download of service
	6.2.3.18

	fileDownloadFailure
	Notification
	C -> A
	Notification to MAA that download of a requested file failed
	6.2.3.10

	inaccessibleLocation
	Notification
	C -> A
	Notification to MAA that the storage location set by the MAA is not accessible by the MBMS Client.
	6.2.3.20

	insufficientStorage
	Notification
	C -> A
	Notification to MAA indicating a warning on the low storage condition
	6.2.3.19

	fileDownloadStateUpdate
	Notification
	C -> A
	Notify MAA of a change in the state of pending file downloads
	6.2.3.15

	fileListAvailable
	Notification
	C -> A
	Notify MAA when the list of downloaded files is available to retrieve
	6.2.3.11

	addSA
	State change
	A -> C
	MAA provides a SA file to the MBMS client
	6.2.3.x

	addSAResponse
	Response
	C -> A
	The response to the MAA set SA API
	6.2.3.y

***** Next change *****
[bookmark: HEADING_FD_REGISTER_FD_APP][bookmark: _Toc532307040]6.2.3.x	Add SA file
[bookmark: _Toc532307041]6.2.3.x.1	Overview
This clause defines addSA() interface.
An MAA calls the addSA() interface to provide SA file to the MBMS Client.
Figure 6.2.3.x.1-1 shows a call flow and the usage of the addSA() interface.

Figure 6.2.3.x.1-1: Add SA file sequence diagram
[bookmark: _Toc532307042]6.2.3.x.2	Parameters
The parameter for the addSA() API is:
-	string saFileLocation – identifies the location where the MBMS Client can find the SA file, following the profile 1c (Annex L.3 of 3GPP 26.346 [2]).
[bookmark: _Toc532307043]6.2.3.x.3	Pre-Conditions
[bookmark: _Toc532307044]The application is registered with the MBMS client to consume File Delivery Application Services.
6.2.3.x.4	Usage of Method for Application
The application uses the method addSA() to provide additionnal service announcement information to the MBMS Client.
[bookmark: _Toc532307045]6.2.3.x.5	Expected MBMS Client Actions
When this method is received, the MBMS client reads the SA file from the location given by the saFileLocation parameter and parses it.
The MBMS Client
-	adds the new MBMS user services announced by the SA file to the internal _service[] list for the invoking MAA;
-	updates the MBMS user services announced by the SA file whose service ID is already included with the _service[] list for the invoking MAA.
NOTE:	the internal _service[] lists for the other MAA are unchanged.
[bookmark: _Toc532307046]6.2.3.x.6	Post-Conditions
The application expects a addSAResponse() as defined in clause 6.2.3.y.

***** Next change *****
6.2.3.y	Add SA file Response
6.2.3.y.1	Overview
This subclause defines the addSAResponse() call.
As illustrated in Figure 6.2.3.x.1-1, the MBMS client responds to an MAA call to the addSA() API with a addSAResponse() call back providing the result of addition of the SA file.
6.2.3.y.2	Parameters
The parameters for the addSAResponse() API are:
-	EmbmsCommonTypes::AddSAresponseCode value – provides a result code on the registration request. The allowed values are:
-	SUCCESS – indicates that the SA file has been parsed and the announced MBMS user service have been added to the internal _service[] list.
-	SA_FILE_INVALID – indicates that the SA file can not be parsed according the profile 1c (Annex L.3 of 3GPP 26.346 [2])
-	string message – provides an associated text description of the error message. The message may be empty.
6.2.3.y.3	Pre-Conditions
The MBMS client has received a call via the addSA() API with the parameters documented in subclause 6.2.3.y.2.
6.2.3.y.4	Usage of Method for Application
If the MBMS-aware application receives such a notification with the response code set to SA_FILE_INVALID, the application may inform the application user or the content provider that the SA file could not be imported by the MBMS client.
6.2.3.y.5	Expected MBMS Client Actions
The parameters of the MBMS client are updated. The MBMS client may issue an fdServiceListUpdate() notification as defined in subclause 6.2.3.17.
6.2.3.y.6	Post-Conditions
There is no change in the client state.
***** Next change *****
[bookmark: _Toc532307401]B.2	IDL for File Delivery Application Service API
 #include "EmbmsCommonTypes.idl"

module FileDeliveryService
{
 //Forward Declaration
 interface ILTEFileDeliveryServiceCallback;

 /**
 * @name DownloadState
 * @brief List of the file download state
 */
 enum DownloadState
 {
 FD_IN_PROGRESS /**< File download is in progress */
 };

 /**
 * @name FdErrorCode
 * @brief List of the errors for File Delivery service
 */
 enum FdErrorCode
 {
 FD_INVALID_SERVICE, /**< Invalid service ID */
 FD_DUPLICATE_FILE_URI, /**< There is another pending capture request for the specified file URI. */
 FD_AMBIGUOUS_FILE_URI, /**< The specified file URI cannot identify a pending capture request. */
FD_STOP_FILE_URI_NOT_FOUND, /**< The file URI specified on a stopFdCapture does not match an outstanding startFdCapture() request. */
 FD_UNKNOWN_ERROR /**< Unknown error */
 };

 /**
 * @name cacheControl
 * @brief List of the errors for File Delivery service
 */
 enum cacheControlMode
 {
 FD_NO_CACHE, /**< The application uses Cache directives to manage how long to retain files.
 When FD_NO_CACHE is selected, the file (or set of files)
 won't be cached, which can be useful when the file is expected to be
 highly dynamic (changes to the file occur quite often) or if the file
 will be used only once by the receiver application. */
 FD_MAX_STALE, /**< The application uses Cache directives to manage how long to retain files.
 When FD_MAX_STALE is selected, the file (or set of files)
 won't be cached, which can be useful when the file is expected to be
 highly dynamic (changes to the file occur quite often) or if the file
 will be used only once by the receiver application. */
 FD_EXPIRES /**< The application uses Cache directives to manage how long to retain files.
 When FD_EXPIRES is selected, indicates the file has expected expiry time.
 In that case cacheControlExpires value is the expiry time*/
 };
 /**
 * @name RegisterFdResponseNotification
 * @brief Fd app registration information
 */
 struct RegisterFdResponseNotification
 {
 EmbmsCommonTypes::RegResponseCode value; /**< Result of registration value as defined in RegResponseCode */
 string message; /**< Message described the result */
 unsigned long acceptedFdRegistrationValidityDuration; /**< Accepted registeration validity duration */
 };

 /**
 * @name FileInfo
 * @brief Downloaded file information
 */
 struct FileInfo
 {
 string fileUri; /**< File URI */
 string fileLocation; /**< The physical location of the file or HTTP URL where the file can be accessed */
 string contentType; /**< MIME type as described in FDT of the file */

 unsigned long availabilityDeadline; /**< The maximum time that embms client guarantees to keep the file in its storage */

 };

 /**
 * @name RegisterFdAppData
 * @brief File delivery app registration information
 */
 struct RegisterFdAppData
 {
 string appId; /**< The application ID used during the registration */
 any platformSpecificAppContext; /**< The platformSpecificAppContext provides a
 platform-specific app context
 object to enable the API implementation to get extra information
 about the application. */

 sequence<string> serviceClassList; /**< List of service classes */

 StorageLocation locationPath; /**< Local storage location on the device where collected files are copied */

 unsigned long registrationValidityDuration; /**< The period of time in seconds that the eMBMS client honors
 the app registration and file capture requests
 after the app deregisters and exits.
 This enables the app to let the eMBMS client capture
 files in the background when the application is not currently registered.
 Default value of this option is 0 which means middleware clears
 any outstanding startFdCapture requests.* /
 };

 /**
 * @name StartFdCaptureData
 * @brief File delivery start capture information. It is used in StartFdCapture API
 */
 struct StartFdCaptureData
 {
 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI for the file(s) to be captured.
 If empty, this implies capture all files. If an absolute URL,
 this implies only the capture of that particular file.
 If a Base URL, this implies the capture of all files that have that Base URL. */
 boolean disableFileCopy; /**< Disables copying of files to register locationPath */
 boolean captureOnce; /**< Capture the file only once and the bearer would be deactivated after file gets downloaded*/
 };

 /**
 * @name StopFdCaptureData
 * @brief File delivery stop capture information. It is used in StopFdCapture API
 */
 struct StopFdCaptureData
 {
 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI. If empty, then it stops capture on all files.
 The path of the URI should contain the complete folder or file name. */
 };

 /**
 * @name FileList
 * @brief List of file URIs
 */
 struct FileList
 {
 sequence<string> fileUriList; /**< List of file URIs */
 };

 /**
 * @name ServiceNameLang
 * @brief Name and language information
 */
 struct ServiceNameLang
 {
 string name; /**< Name */
 string lang; /**< Language */
 };

 /**
 * @name FdServiceInfo
 * @brief File delivery service information
 */
 struct FdServiceInfo
 {
 sequence<ServiceNameLang> serviceNameList; /**< List of Service name and language */
 string serviceClass; /**< Service class */
 string serviceId; /**< Service ID */
 string serviceLanguage; /**< Service language */
 EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability; /**< Service broadcast availability */
 sequence<string> fileUriList; /**< List of file URIs */
 EmbmsCommonTypes::Date activeDownloadPeriodStartTime; /**< The current/next active file download service start time, when files start being broadcast over the air */
 EmbmsCommonTypes::Date activeDownloadPeriodEndTime; /**< The current/next active file download service end time, when files stop being broadcast over the air */

 };

 /**
 * @name FdServices
 * @brief List of FD service info objects
 */
 typedef sequence<FdServiceInfo> FdServices;

 /**
 * @name FdServiceClassList
 * @brief ServiceClass information that the app is interested in. It is for the SetFdServiceClassFilter API.
 */
 typedef sequence<string> FdServiceClassList;

 /**
 * @name ActiveFdService
 * @brief Information about active file capture
 */
 struct ActiveFdService
 {
 string serviceId; /**< File delivery service ID from FdServiceInfo */
 sequence< string > fileUri; /**< File URI list */
 };

 /**
 * @name ActiveFdServiceList
 * @brief List of File delivery service ID from FdServiceInfo
 * @see getFdActiveServices()
 */
 typedef sequence< ActiveFdService > ActiveFdServiceList;

 /**
 * @name StorageLocation
 * @brief Local storage location on the device where collected files are copied.
 * It is used in the SetStorageLocation and registerFdApp API.
 */
 typedef string StorageLocation;

 /**
 * @name FileAvailableNotification
 * @brief Information about the downloaded file.
 */
 struct FileAvailableNotification
 {
 string serviceId; /**< File delivery service ID from FdServiceInfo */
 FileInfo downloadedFileInfo; /**< Downloaded file information */
 };

 /**
 * @name FdServiceErrorNotification
 * @brief File delivery service error information. It is used by the FdServiceErrorNotification API.
 */
 struct FdServiceErrorNotification
 {
 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI */
 FdErrorCode errorCode; /**< File delivery service error ID */
 string errorMsg; /**< error message */
 };

 /**
 * @name FileDownloadFailureNotification
 * @brief File download failure information.
 * @see FileDownloadFailureNotification()
 */
 struct FileDownloadFailureNotification
 {
 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI */
 };

 /**
 * @name StorageError
 * @brief Insufficient storage notification information
 * @see StorageError()
 */
 struct StorageErrorNotification
 {
 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI */
 StorageLocation storagePath; /**< Storage path that does not have sufficient storage to complete the file download */
 unsigned long storageNeeded; /**< Storage needed to complete the file download */
 };

 /**
 * @name InaccessibleLocationNotification
 * @brief Inaccessible storage notification information
 * @see InaccessibleLocation()
 */
 struct InaccessibleLocationNotification
 {
 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string message; /**< Message with additional information */
 StorageLocation locationPath; /**< The path that is not accessible */
 };

 /**
 * @name FdDownloadStateInfo
 * @brief Information returned by getFdDownloadStateList().
 * @see getFdDownloadStateList()
 */
 struct FdDownloadStateInfo
 {
 string fileUri; /**< File URI */
 DownloadState state; /**< State of files from DownloadState. */
 };

 /**
 * @name FileDownloadStateInfoList
 * @brief List of FdDownloadStateInfo
 * @see getFdDownloadStateList()
 */
 typedef sequence<FdDownloadStateInfo> FileDownloadStateInfoList;

 /**
 * @name FileDownloadStateUpdateNotification
 * @brief File download state update notification information
 * @see fileDownloadStateUpdate()
 */
 struct FileDownloadStateUpdateNotification
 {
 string serviceId; /**< File delivery service ID from FdServiceInfo */

 };

 /**
 * @name GetFdDownloadStateListData
 * @brief Information needed to call getFdDownloadStateList(). The returned list of getFdDownloadStateList() is filtered based on the options set in GetFdDownloadStateList.
 * @see getFdDownloadStateList()
 */
 struct GetFdDownloadStateListData
 {
 string serviceId; /**< Active file delivery service ID from FdServiceInfo. */
 };

 /**
 * @name AvailableFileList
 * @brief List of FileInfo
 * @see getFdAvailableFileList()
 */
 typedef sequence < FileInfo > AvailableFileList;

 /**
 * @name FileListAvailableNotification
 * @brief File List Available notification information
 * @see fileListAvailable()
 */
 struct FileListAvailableNotification
 {
 string serviceId; /**<File delivery service ID from FdServiceInfo. */
 };

 /**
 * @name addSAResponseNotification
 * @brief Information about the service announcement addition.
 */
 struct addSAResponseNotification
 {
 AddSAResponseCode responseCode; /**< Response code for the addSA */
 string message; /**< error message */
 };

 interface ILTEFileDeliveryService
 {

 /**
 @name getVersion
 @brief Retrieves the version of the current File delivery service interface implementation
 @return Interface Version
 **/
 string getVersion();

 /**
 @name registerFdApp
 @brief Application registers a callback listener with the EMBMS client
 @param[in] regInfo Information required for application registration
 @param[in] cb Callback listener
 @see RegisterFdAppData
 @see registerFdResponse()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode registerFdApp(in RegisterFdAppData regInfo, in ILTEFileDeliveryServiceCallback callBack);

 /**
 @name deregisterFdApp
 @brief Application deregisters with the EMBMS client
 @pre Application calls registerFdApp
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode deregisterFdApp();

 /**
 @name startFdCapture
 @brief Start download of files over file delivery service over broadcast
 @param StartFdCapture Struct includes parameters for StartFdCapture request
 @pre Application is registered for File Delivery service
 @see fileAvailable()
 @see StartFdCaptureData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode startFdCapture(in StartFdCaptureData info);

 /**
 @name stopFdCapture
 @brief Stop download of files for the file Delivery service over broadcast
 @param stopFdCapture Struct includes parameters for stopFdCapture
 @pre Application is registered for File Delivery service
 @see StopFdCaptureData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode stopFdCapture(in StopFdCaptureData info);

 /**
 @name getFdActiveServices
 @brief Get list of currently active services
 @param[out] ActiveFdServiceList The list of services the app has
 @pre Application is registered for File delivery service
 @see ActiveFdServiceList
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdActiveServices(out ActiveFdServiceList services);

 /**
 @name getFdAvailableFileList
 @brief Retrieves the list of files previously captured for the
 application.
 @param[in] File delivery service ID from FdServiceInfo
 @param[out] FileList List of files previously captured and filtered based on serviceId
 @pre Application is registered for File delivery service and received fileListAvailable() notification
 @see fileListAvailable()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdAvailableFileList(in string serviceId, out AvailableFileList files);

 /**
 @name getFdServices
 @brief Retrieves the list of File Delivery services defined in the USD.
 List of services is filtered by the service class filter,
 if a filter has been set by the application
 @param[out] FDServices List of filtered File delivery services
 @pre Application is registered for File delivery service and received fdServiceListUpdate() notification
 @see fdServiceListUpdate()
 @see FdServices
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdServices(out FdServices services);

 /**
 @name getFdDownloadStateList
 @brief Retrieves the state of files pending download
 @param GetFileDownloadState Includes parameters for getFileDownloadState
 @pre Application is registered for File Delivery service and received fileDownloadStateUpdate() notification
 @see fileDownloadStateUpdate()
 @see GetFdDownloadStateListData
 @see FileDownloadStateInfoList
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdDownloadStateList(in GetFdDownloadStateListData info, out FileDownloadStateInfoList fdStateList);

 /**
 @name setFdServiceClassFilter
 @brief Application sets a filter on file delivery services in which it is interested
 @param[in] serviceClassInfo List of service class filters requested by the application
 @pre Application is registered successfully with file delivery service
 @see SetFdServiceClassFilterData
 @see fdServiceListUpdate()
 @see getFdServices()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setFdServiceClassFilter(in FdServiceClassList serviceClassInfo);

 /**
 @name setFdStorageLocation
 @brief Sets the storage location to store the application downloaded files
 @param[in] StorageLocation Includes parameters for setStorageLocation request
 @pre Application is registered for File Delivery service
 @see StorageLocation
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setFdStorageLocation(in StorageLocation locationPath);

 /**
 @name addSA
 @brief provides the announcement of additional MBMS user services to the MBMS client
 @param saFileLocation location of the SA file
 @see addSAResponse
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode addSA(in string saFileLocation);

 };

 interface ILTEFileDeliveryServiceCallback
 {
 /**
 @name registerFdResponse
 @brief The response to the application streaming service register API.
 @param Notification Parameters for register File delivery response
 @pre Application called registerFdApp
 @see RegisterFdResponseNotification
 @see registerFdApp()
 **/
 void registerFdResponse(in RegisterFdResponseNotification info);

 /**
 @name fileAvailable
 @brief Notification to application when a new file is downloaded per
 application capture request
 @param FileAvailableNotification Includes parameters for the downloaded file
 @pre Application is registered for File Delivery service and application called startFdCapture()
 @see FileAvailableNotification
 **/
 void fileAvailable(in FileAvailableNotification notification);

 /**
 @name fdServiceListUpdate
 @brief Notification to application on an update of the available for file delivery services.
 Update may be due to the received USD or the network configuration
 @pre Application is registered for file delivery service
 @post Call getFdServices()
 **/
 void fdServiceListUpdate();

 /**
 @name fdServiceError
 @brief Notification to application when there is an error with broadcast download of service
 @param Notification Parameters for service error notification
 @pre Application is registered for streaming service and called startFdServiceCapture
 @see FdServiceErrorNotification
 **/
 void fdServiceError(in FdServiceErrorNotification notification);

 /**
 @name fileDownloadFailure
 @brief Notification to application that download of a requested file
 failed
 @param FileDownloadFailureNotification Includes information about the failed file download
 @pre Application is registered for File Delivery service and application called startFdCapture()
 @see FileDownloadFailureNotification
 **/
 void fileDownloadFailure(in FileDownloadFailureNotification notification);

 /**
 @name storageError
 @brief Notification to application that the storage location set by the
 application does not have enough storage for the file download
 @param StorageError Includes parameters to specify the file and
 storage requirement
 @pre Application is registered for file delivery service and application called startFdCapture()
 @see StorageError
 **/
 void storageError(in StorageErrorNotification info);

 /**
 @name inaccessibleLocation
 @brief Notification to application that the storage location set by the
 application is not accessible by the eMBMS Client
 @param InaccessibleLocation Includes the inaccessible storage path
 @pre Application is registered for File delivery service
 @see InaccessibleLocation
 Application calls setStorageLocation
 **/
 void inaccessibleLocation(in InaccessibleLocationNotification info);

 /**
 @name fileDownloadStateUpdate
 @brief Notify application of a change in the state of pending file
 downloads
 @param FileDownloadStateUpdate Includes parameters for fileDownloadStateUpdate()
 @pre Application is registered for File delivery service
 @post call getFdDownloadStateList()
 @see FileDownloadStateUpdate
 **/
 void fileDownloadStateUpdate(in FileDownloadStateUpdateNotification info);

 /**
 @name fileListAvailable
 @brief Notify application when the list of downloaded files is available to retrieve
 @param[in] FileListAvailable Includes parameters for fileListAvailable
 @pre Application is registered for File Delivery service
 @post call getFdAvailableFileList()
 **/
 void fileListAvailable(in FileListAvailableNotification info);

 /**
 @name addSAResponse
 @brief The response to the add service announcement API.
 @param [in] Parameters for register File delivery response
 @pre Application called addSA
 @see AddSAResponseCode
 @see addSA()
 **/
 void addSAResponse(in AddSAResponseNotification info);

 };

};

module EmbmsCommonTypes
{
 //Common types
 typedef unsigned long long Date;

 /**
 * @name ResultCode
 * @brief The return value of the API
 */
 enum ResultCode
 {
 SUCCESS, /**< Success */
 REGISTRATION_IN_PROGRESS, /**< Failed due to registration in progress */
 NO_VALID_REGISTRATION, /**< Failed due to no valid registration */
 MISSING_PARAMETER, /**< A mandatory parameter is missing */ UNKNOWN_ERROR /**< Failed with unknown error */
 };

 /**
 * @name ServiceAvailabilityType
 * @brief Indicates service availability state
 */
 enum ServiceAvailabilityType
 {
 BROADCAST_AVAILABLE, /**< Service is available via broadcast */
 BROADCAST_UNAVAILABLE, /**< Service is unavailable via broadcast */		SERVICE_UNAVAILABLE /**< Service is unavailable */
 };

 /**
 * @name RegResponseCode
 * @brief Indicates app registration response
 */
 enum RegResponseCode
 {
 REGISTER_SUCCESS, /**< Registration was successful */
 FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE /**< Registration failed because LTE eMBMS is unavailable on device */
 };

 /**
 * @name AddSAResponseCode
 * @brief Indicates the response to the add service announcement API
 */
 enum addSAResponseCode
 {
 SUCCESS, /**< Success */
 SA_FILE_INVALID /**< SA file is not valid or not found */
};

};
***** End of changes *****

image1.emf
MBMS Aware

Application

MBMS Client

registerFdApp()

deregisterFdApp()

addSA()

registerFdResponse()

addSAResponse()

fdServiceListUpdate()

oleObject1.bin
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

