Page 1

3GPP TSG SA3 Meeting #86bis
S3-170750
Busan, Korea; 27th - 31st March 2017
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	33.863
	CR
	0006
	rev
	-
	Current version:
	14.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:

	BEST: Clarifying key synchronization aspect in Solution #10

	
	

	Source to WG:
	Nokia

	Source to TSG:
	SA3

	
	

	Work item code:
	 FS_BEST_MTC_Sec
	
	Date:
	2017-03-13

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-14

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)

	
	

	Reason for change:
	There isn’t enough text on how Solution #10 addresses possible key synchronization issues between the UE and the EMSE.

	
	

	Summary of change:
	Clarify how Solution #10 handles possible key synchronization issues

	
	

	Consequences if not approved:
	There is no clarity on how possible key synchronization issues are addressed in Solution #10.

	
	

	Clauses affected:
	6.10.2.1

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

* * * First Change * * * *

6.10.2
Solution description

6.10.2.1
Features

The present solution follows the same functional architecture as in solution #2.

Requirements on the application layer security protocol:

The present solution can be used as a key establishment mechanim for an application layer security protocol if the protocol fulfills the following requirements:

1) The protocol needs to support use with pre-shared keys.

2) The protocol needs to provide a means to transport the user identity (including a key identifier) to the EMSE.

NOTE: This identity transport mechanism necessarily is specific to the particular security protocol.

3) The protocol needs to be able to generate fresh session keys for consecutive instances of the protocol even when the pre-shared key remains the same (cf. also clause on key refresh below).

NOTE: All three requirements are satisfied for (D)TLS and IKE.

Considerations on the user identity in the application layer security protocol:

The UE could use the IMSI. But the UE’s application layer identity used in the security protocol between UE and EMSE does not have be identical to the IMSI. This depends on offline agreements between UE, EMSE, and the mobile network operator.

 If the UE’s application layer identity is different from the IMSI, then two alternatives are available:

1)
EMSE translates the UE’s application layer identity to an IMSI and sends IMSI to EMKS.

2)
EMSE sends the UE’s application layer identity to the EMKS, and the EMKS translates the UE’s application identity to an IMSI.

For case 1, there may be privacy implications if MNO does not want to share the IMSI with the third party.

For case 2, it may be possible that the third party does not want to share the UE’s application layer identity with the MNO. However, case 2 seems less critical as, for any solution for BEST, the third party depends on the MNO for deriving pre-shared key for its communicaton protocol between the UE and EMSE, which means that the third party has to put a substantial amount of trust in the MNO anyhow. Case 2 therefore is the preferred solution.

Key synchronization between the UE and the EMSE:
Key synchronization issues could occur due to race condition or authentication failures. For example,
a) When HSS pushes key to EMKS the HSS does not know whether network access authentication will be successful. If not successful, the UE does not have the latest key pushed to the EMKS. This could happen repeatedly. So, when a UE establishes an application layer connection with the EMSE the UE could have a key that is older than the latest one available at the EMKS.

b) Assume an MME requests re-authentication (which is possible even while the UE is in connected state). The HSS then sends authentication vectors back to the MME and, at the same time, pushes e2m_int_key to the EMKS. At (roughly) the same time the UE establishes an application layer connection with the EMSE, but has not seen the latest Authentication challenge from the MME yet (race condition). Again, the UE could have a key that is older than the latest one available at the EMKS.
The present solution avoids key synchronization problem through the following set of features:

a) It is proposed that the EMKS does not immediately delete a e2m_int_key in storage when it receives a new e2m_int_key from the HSS for a given UE. The EMKS keeps a fixed (small) number of instances of e2m_int_key from the past. This is up to the policy of the EMKS.
b) Identify each instance of e2m_int_key with a unique key identifier. HSS pushes both the key and its identifier to EMKS during network access authentication. UE is independently able to generate the key identifier. Considerations on key identifier is discussed next.
c) UE provides the latest version of the key identifier to EMSE when it initiates setup of the application layer security prototocol. This is used by EMSE to query EMKS for the appropriate e2m_int_key.
d) The EMKS obtains the associated e2m_int_key from its store and responds to EMKS with the generated e2m_key.
Therefore, even if UE had an older version of e2m_int_key, by storing multiple instances of e2m_int_key in its store, EMKS can obtain the correct e2m_int_key and continue with the derivation of e2m_key.
Considerations on the key identifier:

The present solution proposes the use of a key identifier for the e2m_key. This key identifier is assumed to be sent along with the UE’s application layer identity from the UE to the EMSE, when application layer security is established, and further from the EMSE to the EMKS when the EMSE fetches a key from the EMKS.

The key identifier is useful to synchronize the use of e2m_key at UE and EMSE.

The present solution envisages two alternatives for defining a key identifier:

1) Use a portion of RAND as contained in the authentication vector, e.g. the 32 least significant bits of RAND. With this approach, the HSS would have to push the relevant portion of RAND from the HSS to the EMKS, together with the e2m_int_key.

2) Use a short hash of the e2m_int_key. The hash would not serve any cryptographic purposes. It should just be long enough to achieve an acceptably small rate of accidental collisions. With this approach, the EMKS would have to compute hashes on all the e2m_int_key values it has stored for a particular UE when the EMKS receives a request from the EMSE to fetch a key.

Alternative 1 is the preferred approach.
Transparency for core network nodes:

The present solution will work transparently to core network. In other words, the present solution does not require any change to SGSNs, GGSNs, MMEs, S-GWs and P-GWs.

Transparency for the USIM:

As for solution#2, the present solution can re-use existing USIMs, with all CIoT-specific operations to be done in the ME.

Key derivation rules:

This solution reuses key derivation rules from solution #2. They are repeated here for the sake of readability of the present solution

As for solution#1, the present solution uses a new key pair CK´, IK´for UMTS PS or GPRS access security between UE and SGSN. This new key pair CK´, IK´ is generated in the HSS and included in the UMTS AKA authentication vector sent to the SGSN. The SGSN will not notice the difference to legacy authentication vectors. For EPS, KASME can be re-used as defined today.

In the present solution, the key used between UE and EMSE is called "e2m_key".

The e2m key is derived in two steps:

(1)
Whenever an Authentication Information Request from the SGSN or the MME arrives at the HSS, the HSS checks the subscription profile for the need to derive an e2m_int_key. The HSS then generates authentication vectors and sends them back to the SGSN or MME. If there is a need to derive an e2m_int_key a new key pair CK´, IK´is included in the authentication vector for UMTS PS or GPRS. Furthermore, the HSS derives e2m_int_key from CK, IK and a string pointing to the purpose of the key use, namely e2m security for CIoT, where the derivation of e2m_int_key has the form

e2m_int_key = KDF (CK||IK, string)

and the string could be set to e.g. "e2m_ CIoT". The HSS the pushes the e2m_int_key to the EMKS.

NOTE: It is expected that the interface between HSS and EMKS will be based on DIAMETER, details will be defined in stage 3.
(2)
The EMKS derives e2m_key from e2m_int_key upon request from an EMSE. As there may be multiple instances of EMSE it becomes necessary to include an identifier of the EMSE in the key derivation in order to achieve key separation between EMSEs. The following is the key derivation rule:

e2m_key = KDF (e2m_int_key, EMSE_Id, string)

Editor's Note: it is ffs whether the additional input 'string' is needed in the derivation of e2m_key. It may be appropriate to allocate FC values for the purpose of the two key derivations in steps 1) and 2) according to TS 33.220 [20], B.2.2.

Key refresh:

There are two aspects to consider:

1) The application layer security protocol requires a fresh session key.

This is the case e.g. when the application layer session is torn down and re-established some time later. It could be that the e2m_key, which is used as pre-shared key, has not changed in the meantime. The present solution does not envisage a means for the application layer to trigger the generation of a new e2m_key. Therefore, it is stated further above as a requirement that application layer security protocol needs to be able to generate fresh session keys for consecutive instances of the protocol even when the pre-shared key remains the same.

2) A new e2m_int_key becomes available due to a re-authentication at the network access layer.

In general, it is not the case that an application layer security protocol can change the pre-shared key during an ongoing session. This means that a new pre-shared key derived from the new e2m_int_key can only be established when the session has been terminated, for reasons determined within the application, and a new session is set up. Then the EMSE will again contact the EMKS and obtain, in this way, a new e2m_key.

* * * End of Change * * * *
