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Start code change 1

diff -rwBu 26443-d20/c-code/lib_dec/igf_dec.c 26443_CR/c-code/lib_dec/igf_dec.c

--- 26443-d20/c-code/lib_dec/igf_dec.c
2016-04-11 22:11:50.000000000 +0200

+++ 26443_CR/c-code/lib_dec/igf_dec.c
2016-06-20 13:33:52.000000000 +0200

@@ -216,8 +216,17 @@

         if (IGF_WHITENING_STRONG == hPrivateData->currWhiteningLevel[tile_idx])

         {

+            float abs_sum;

+            abs_sum = 0.f;

+            for(i = strt_cpy; i < hGrid->startLine; i++)

+            {

+                abs_sum += (float) fabs(src_spec[i]);

+            }

+

             tb = swb_offset[hGrid->sfbWrap[tile_idx]];

+            if( abs_sum > 0.f )

+            {

             for (i = strt_cpy; i < hGrid->startLine; i++)

             {

                 igf_spec[tb++] = own_random(&hInfo->nfSeed);

@@ -225,6 +234,14 @@

         }

         else

         {

+                for (i = strt_cpy; i < hGrid->startLine; i++)

+                {

+                    igf_spec[tb++] = 0.f;

+                }

+            }

+        }

+        else

+        {

             if (IGF_WHITENING_MID == hPrivateData->currWhiteningLevel[tile_idx])

             {

                 if (hPrivateData->n_noise_bands)

@@ -319,9 +336,6 @@

     float w0;

     float w1;

     float w2;

-    float comp_th;

-    float comp_ratio;

-    float comp_offset;                  /* comp_offset = comp_ratio * comp_th - comp_th; */

     float *sN;

     float *pN;

     float gFactor;                      /* general SCF adaption */

@@ -332,9 +346,6 @@

     w0          = 0.201f;

     w1          = 0.389f;

     w2          = 0.410f;

-    comp_th     = 1.f;

-    comp_ratio  = 256.f;

-    comp_offset = 255.f;

     dE          = 0.f;

     set_i(flag_sparse,   0.f, N_MAX_TCX-IGF_START_MN);

@@ -463,10 +474,6 @@

         if (pN[sfb] > 1.e-20f)

         {

             gain[sfb] = (float)sqrt(dN[sfb] / pN[sfb]);

-            if (gain[sfb] > comp_th)

-            {

-                gain[sfb] = (gain[sfb] + comp_offset) / comp_ratio;

-            }

         }

         for (s_sfb = sfb + 1; s_sfb < min(sfb + hopsize, stop_sfb); s_sfb++)

End code change 1
