Page 1

3GPP TSG-SA4 Meeting #89
S4-160690
Kista, Sweden, June 27 – July 01, 2016
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	26.443
	CR
	0014
	rev
	-
	Current version:
	13.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	x
	Radio Access Network
	
	Core Network
	x

	

	Title:

	Corrections to EVS Floating-Point Source Code

	
	

	Source to WG:
	Ericsson LM, Fraunhofer IIS, Huawei Technologies Co. Ltd, Nokia Corporation, NTT,

NTT DOCOMO, INC., ORANGE, Panasonic Corporation, Qualcomm Incorporated, Samsung Electronics Co., Ltd., VoiceAge and ZTE Corporation

	Source to TSG:
	S4

	
	

	Work item code:
	EVS_Codec
	
	Date:
	2016-06-21

	
	
	
	
	

	Category:
	A
	
	Release:
	Rel-13

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)

	
	

	Reason for change:
	During testing the codec, an undesired behavior of the codec was found: Signals exhibiting an extreme inverse spectral tilt, i.e. signals exhibiting a significantly more energy at high frequencies than at low frequencies, could not be reproduced corectly. This leads to a decoded signal which has a different characteristics than the input signal.

	
	

	Summary of change:
	The reason of this misbehavior was found to be in the IGF gain compression mechanism, which in general heavily impacts such signals. Further on, it was found that the gain compression mechanism was not implemented correctly for certain IGF whitening levels.

After extensive testing it is proposed to disable the IGF gain compressor and align the behavior of the IGF whitening-mode “STRONG” to the other whitening modes in case all MDCT coefficients are quantized to 0. This avoids noise-bands popping up in the IGF range, which before were handled using the gain-compressor.

Affected operating-modes:

WB: 9.6 - 13.2 kbit/s

SWB: 9.6 - 128 kbit/s

FB: 16.4 - 128 kbit/s

	
	

	Consequences if not approved:
	Artifacts compromising usability and user-experience may occur in some rare cases in future.

	
	

	Clauses affected:
	c-code/lib_dec/igf_dec.c

	
	

	
	Y
	N
	
	

	Other specs
	x
	
	 Other core specifications

	CR 26.442-0017

	affected:
	x
	
	 Test specifications
	CR 26.444-0012

	(show related CRs)
	
	x
	 O&M Specifications
	

	
	

	Other comments:
	

Start code change 1

diff -rwBu 26443-d20/c-code/lib_dec/igf_dec.c 26443_CR/c-code/lib_dec/igf_dec.c

--- 26443-d20/c-code/lib_dec/igf_dec.c
2016-04-11 22:11:50.000000000 +0200

+++ 26443_CR/c-code/lib_dec/igf_dec.c
2016-06-20 13:33:52.000000000 +0200

@@ -216,8 +216,17 @@

 if (IGF_WHITENING_STRONG == hPrivateData->currWhiteningLevel[tile_idx])

 {

+ float abs_sum;

+ abs_sum = 0.f;

+ for(i = strt_cpy; i < hGrid->startLine; i++)

+ {

+ abs_sum += (float) fabs(src_spec[i]);

+ }

+

 tb = swb_offset[hGrid->sfbWrap[tile_idx]];

+ if(abs_sum > 0.f)

+ {

 for (i = strt_cpy; i < hGrid->startLine; i++)

 {

 igf_spec[tb++] = own_random(&hInfo->nfSeed);

@@ -225,6 +234,14 @@

 }

 else

 {

+ for (i = strt_cpy; i < hGrid->startLine; i++)

+ {

+ igf_spec[tb++] = 0.f;

+ }

+ }

+ }

+ else

+ {

 if (IGF_WHITENING_MID == hPrivateData->currWhiteningLevel[tile_idx])

 {

 if (hPrivateData->n_noise_bands)

@@ -319,9 +336,6 @@

 float w0;

 float w1;

 float w2;

- float comp_th;

- float comp_ratio;

- float comp_offset; /* comp_offset = comp_ratio * comp_th - comp_th; */

 float *sN;

 float *pN;

 float gFactor; /* general SCF adaption */

@@ -332,9 +346,6 @@

 w0 = 0.201f;

 w1 = 0.389f;

 w2 = 0.410f;

- comp_th = 1.f;

- comp_ratio = 256.f;

- comp_offset = 255.f;

 dE = 0.f;

 set_i(flag_sparse, 0.f, N_MAX_TCX-IGF_START_MN);

@@ -463,10 +474,6 @@

 if (pN[sfb] > 1.e-20f)

 {

 gain[sfb] = (float)sqrt(dN[sfb] / pN[sfb]);

- if (gain[sfb] > comp_th)

- {

- gain[sfb] = (gain[sfb] + comp_offset) / comp_ratio;

- }

 }

 for (s_sfb = sfb + 1; s_sfb < min(sfb + hopsize, stop_sfb); s_sfb++)

End code change 1
