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*** Start change 1 ***
2
References

[…]
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*** End change 1 ***

*** Start change 2 ***
5.2
Concealment operation related to spectral envelope (LPC) representation

[…]

	LPC Quantization == 0
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	LPC Quantization == 1

ACELP
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[…]

The estimated LSF vector of the concealed frame [image: image15.wmf][
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 is converted to LSP representation and interpolated. The interpolation procedure corresponds to the procedure described in subclause 5.1.9.6 of [5]. The interpolation procedure calculates four or five LSP vectors, each for a given subframe of the concealed frame. The interpolation is done between the LSP vector of the last subframe of the last frame (the one before the concealed frame)and the LSP vector derived from [image: image16.wmf][
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 during concealment, as described above. 


*** End change 2 ***

*** Start change 3 ***
5.2.3
Check for Mid LSF stability 

[…]

where i-th dimension of the weighting vector [image: image17.wmf]n
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. This could potentially create LSF clustering that result in an unstable LSF synthesis filter. To remedy this situation, a potential instability is detected as described below.
In the frame that follows the packet loss, the decoder checks whether the computed mid-LSFs are ordered correctly i.e. [image: image28.wmf])
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. If violation of this rule is detected the LSFs are considered as potentially unstable. If potential LSF instability is detected, decoder uses a fixed weighting value [image: image29.wmf]fixed
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 (typically 0.6) for mid LSF interpolation as follows. 


*** End change 3 ***

*** Start change 4 ***
5.2.5
LPC gain compensation

At 9.6, 16.4, 24.4, 48, 96 and 128 kbps, the LPC concealment and interpolation will lead to a change of overall gain of the signal, which is unwanted when targeting a certain background noise level during consecutive frame loss. Therefore the energy of the LPC is measured and stored during decoding of regular frames. In a concealment frame the energy of the concealed LPC is measured and compared to the LPC energy of the last correctly received frame and any change is compensated.

To measure the LPC energy
, a vector of length 64 is generated and initialized to all zero. Then the first entry is set to one:
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[image: image31.wmf]input

imp

is fed into the LPC synthesis filter, where the filter memory is initialized with zeros. The output of the filter (impulse response) is denoted as [image: image32.wmf]LPC

imp

. After filtering, the root mean square energy is calculated by:
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In correctly received frames the energy is calculated and stored using the latest LPC available.

In case of concealment the compensation differs for ACELP and TCX:

For ACELP there will be 4 or 5 sets of LPC coefficients, depending on the number of subframes to be synthesized. For each set of coefficients the corresponding energy is calculated and divided by the energy derived in the last good frame. The result of the division is used as a factor to be multiplied to each element of the excitation vector of the corresponding subframe. See subsection 5.3.4.2.1.
For TCX, there will be one or two sets of coefficients (TCX10/TCX20). For each set of coefficients the corresponding energy is calculated and divided by the energy derived in the previous segment. The segment size equals 10 ms for TCX10 and 20 ms for TCX20. As the fade out is performed in the time domain, the LPC gain compensation is also done in the time domain by linearly fading from the last compensation factor (would be 1 for the first lost frame) to the derived compensation factor at the end of the segment. See subsection 5.4.6.1.3.


*** End change 4 ***

*** Start change 5 ***
5.3.1
General

In case of frame erasures, the concealment strategy can be summarized as a convergence of the signal energy and the spectral envelope to the estimated parameters of the background noise. A frame erasure is signalled to the decoder by setting the bad frame indicator variable for the current frame active. The periodicity of the signal is converged to zero. The speed of the convergence is dependent on the parameters of the last correctly received frame and the number of consecutive erased frames, and is controlled by an attenuation factor, (. The factor, (, is further dependent on the stability, (, of the LP filter for UNVOICED_CLAS frames. In general, the convergence is slow if the last good received frame is in a stable segment and is rapid if the frame is in a transition segment. The values of ( are summarized in subclause 5.3.4.1 for the excitation concealment of rates: 5.9, 7.2, 8.0, 13.2, 32 and 64 kbps and in subclause 5.3.4.2.3 for the rates: 9.6, 16.4 and 24.4 kbps. Similar values are also defined for LSF concealment as described in subclause 5.2.


*** End change 5 ***

*** Start change 6 ***
5.3.1.4
Construction of the random part of the excitation

The innovative (non-periodic) part of the excitation is generated randomly. A simple random generator with approximately uniform distribution is used. Before adjusting the innovation gain, the randomly generated innovation is scaled to some reference value, fixed here to the unitary energy per sample. At the beginning of an erased block, the innovation gain, gs, is initialized by using the innovative excitation gains of each subframe of the last good frame
for 4 subframes:
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for 5 subframes:
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where 
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 are the algebraic codebook gains of the four subframes of the last correctly received frame. The attenuation strategy of the random part of the excitation is somewhat different from the attenuation of the pitch excitation. The reason is that the pitch excitation (and thus the excitation periodicity) is converging to 0 while the random excitation is converging to the CNG excitation energy. The innovation gain attenuation is calculated as […]

*** End change 6 ***

*** Start change 7 ***
5.3.1.7
Specifics for AMR-WB IO modes

[…]

Additionally, the first step classification is used to evaluate the interval between two frames classified as unvoiced [image: image42.wmf]uv

N

 when the coder type is different from INACTIVE. When a frame is classified as unvoiced and the coder type is different from INACTIVE, meaning that the signal is unvoiced but not silence, if the long term active content energy[image: image45.wmf]T

E

, as formulated in subclause 5.1.2, is below 40 dB the unvoiced interval counter is set to 16, otherwise the unvoiced interval counter [image: image46.wmf]uv
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 is decreased by 8 and also limited between 0 and 300 for active signal and between 0 and 125 for inactive signal. It is reminded that, the difference between active and inactive signal is deduced from the voice activity detection VAD information included in the bitstream. 

[…]


*** End change 7 ***

*** Start change 8 ***
5.3.3.1
Specifics for rate 24.4 kbps
As described in subclause 5.5.4 of [5], the activation flag and differential pitch lag are transmitted as side information to obtain better pitch lag estimates and excitation signal for the future frame to be concealed. 

The first 1 bit of the side information is read from the bit-stream yielding the activation flag. In case the activation flag equals 0, no further decoding is performed. If the flag equals 1, additional 4 bits are decoded yielding the differential pitch lag. With 4bits 16 different states are signalled. 15 states are used to represent the differential pitch lag, ranging from -7 to 7. The remaining signalling state is used to signal, that the pitch lag difference was outside the +-7 range on encoder side.
In case the pitch lag difference is inside the signalled valid rage of +-7, the differential pitch lag is added to the pitch lag of the last sub-frame. The result is used as an initial pitch lag estimate of the future 1st and 2nd sub-frame. The initial pitch lag estimates are used as an input to the pitch lag extrapolation procedure described in subclause 5.3.1.1. If the initial pitch lag estimates are available, the history of pitch lags used for the pitch extrapolation is updated with the initial pitch lag estimates. In case the criteria in clause 5.3.1.1 is not met, instead of [image: image47.wmf]old

pitch

, the initial pitch lag estimate is used for building the first and second subframe of the adaptive codebook during concealment .

In case the pitch lag difference indicates that the difference is outside the valid range of +-7 the pitch extrapolation is performed like there is no future pitch lag information available in the bitstream.

*** End change 8 ***

*** Start change 9 ***
5.3.3.3
Energy control during recovery

[…]

The energy [image: image49.wmf]1
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 of the synthesized speech [image: image50.wmf](
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 at the end of the first non erased frame is first computed as follows. The energy is the maximum of the signal energy for frames classified as VOICED_CLAS or ONSET, or the average energy per sample for all other frames. For VOICED_CLAS or ONSET frames, the maximum signal energy is computed pitch-synchronously at the end of the current frame as follows:
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where L is the frame length at internal sampling rate. Signal [image: image54.wmf](

)

n

s

pre

ˆ

 is the local synthesis signal sampled at the internal sampling rate. The integer pitch period length [image: image55.wmf]end
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is the rounded pitch period of the last subframe, i.e. 
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For all other classes, [image: image59.wmf]1

E

 is the average energy per sample of the last half of the current frame, i.e.
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[image: image62.wmf]1
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 is computed similarly using the synthesized speech signal of the previous (last erased) frame. When [image: image63.wmf]1
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 is computed pitch synchronously (i.e. if the class of the previous frame was VOICED_CLAS or ONSET), it uses the concealment pitch period [image: image64.wmf]c
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 is computed pitch synchronously (the class of the current frame is VOICED_CLAS or ONSET), it is done similarly using the rounded pitch value [image: image66.wmf][
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 of the first subframe:
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For other frame classes:
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As mentioned previously, [image: image70.wmf]q

E

is transmitted from the encoder, but only at high bitrates. If [image: image71.wmf]q
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 is not available, it is initialized to [image: image72.wmf]1

E

 and further limited as described below.
[…]

*** End change 9 ***

*** Start change 10 ***
5.3.4.2.1
Fading to background level

The innovative as well as the harmonic excitation fade to individual target levels by changing the codebook gains. 
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where:
[image: image74.wmf][
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 is the gain of the current frame;
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 is the gain of the previous frame;
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 is the target gain;
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 is the fading factor, its derivation is outlined in subclause 5.3.4.2.3.

The fading is performed as follows: 
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Where 
[image: image79.wmf]]
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 is the input signal, e.g. the harmonic or the innovative excitation, and 
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The harmonic excitation is faded towards zero: [image: image81.wmf]0
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The innovative excitation is faded towards a target background noise level: [image: image82.wmf]cng
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. It is derived during the first lost frame based on the background noise spectrum derived by CNG during clean channel decoding (see clause 4.3 of [5]). Its derivation is performed as follows:

a)
Derive target level in time domain based on background noise spectrum [image: image83.wmf]cng
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b)
Compensate gain of LPC synthesis / de-emphasis (see also subsection 5.2.5):
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where 
[image: image88.wmf][
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 is derived subframe-wise as stated in equation (26).

*** End change 10 ***

*** Start change 11 ***
5.4.2.1
PLC method selection

In case the last good frame prior to a loss was coded with the MDCT based TCX, a range of different specifically optimized PLC methods are available that are selected based on second level criteria described in this subclause. The PLC methods are:

-
TCX time domain concealment

-
MDCT frame repetition with sign scrambling

-
tonal MDCT concealment using phase prediction

-
non-tonal concealment with waveform adjustment

The criteria evaluated in this second level PLC method selection are

-
Last MDCT mode: The MDCT mode of the last good frame [image: image90.wmf]lastCore

 is obtained by decoding the bitstream in every good frame. 

-
Number of consecutively lost frames: The number of consecutively lost frames is increased in case of a frame loss and is reset in a good received frame.

-
Last unmodified LTP gain: If LTP information is updated in the last good frame, the variable [image: image91.wmf]Gain

ltpLastUnm

 contains the LTP gain, and otherwise it is zero.

-
Tonal MDCT peak detection flag: The flag [image: image92.wmf]ctive

tonalMdctA

 describes whether tonal MDCT concealment using phase prediction should be done. It is set to zero by default and remains zero if one of the following conditions is true: 

- 
the last core or the second last core is not mode TCX20

-
the last unmodified LTP gain is bigger than 0.4 and the last pitch is bigger than [image: image93.wmf]2

/

L


-
the last pitch differs from the second last pitch

-
TNS was active in the last or second last frame


Otherwise, [image: image94.wmf]ctive

tonalMdctA

 is set to one if the output of the peak detection of tonal components (see subclause 5.4.2.4.2) matches one of the following criteria:

- 
the number of found peaks is higher than 10; or

- 
the number of found peaks is higher than 5 and the difference between the 3rd and 2nd last pitch is smaller than 0.5 or

- 
at least one peak is found and the last good frame was either UNVOICED_TRANSITION or UNVOICED_CLAS and the difference between the 3rd and 2nd last pitch is smaller than 0.5 and the last unmodified LTP gain is [image: image95.wmf]4
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.

-
Flag enabling non-tonal concealment with waveform adjustment: The flag [image: image96.wmf]aveadjust

enablePlcW

 is set to one if the bit rate is one out of the set of {48 kbps, 96 kbps, 128 kbps}. 

-
Intelligent gap filling: 
The intelligent gap filling flag [image: image97.wmf]igf

describes whether intelligent gap filling is active (1) or not (0) (see subclause 5.4.2.6).

-
TCX_Tonality flag array: 
array of tonality flags of the last ten received frames (see subclause 5.4.5.3a).
The decision logic of the different PLC methods is done with the criteria shown above. The selection of the PLC is performed only in the first lost frame after a good frame and pertained in subsequently lost frames. 

TCX time domain concealment is selected if:
-
[image: image98.wmf]ctive

tonalMdctA

flag is zero; and 

-
[image: image99.wmf]lastCore

 is TCX_CORE and [image: image100.wmf]4
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and the last good frame was neither UNVOICED_TRANSITION nor UNVOICED_CLAS. 

In all other cases, the three MDCT-based concealment methods are selected as described below.

MDCT frame repetition with sign scrambling is selected if:
-
[image: image101.wmf]ctive
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 is one (in conjunction with tonal MDCT concealment using phase prediction); or

-
[image: image102.wmf]ctive

tonalMdctA

 is zero and non-tonal concealment with waveform adjustment is not active.
Tonal MDCT Concealment using phase prediction is selected if
-
[image: image103.wmf]ctive

tonalMdctA

 is one

Non-tonal concealment with waveform adjustment is selected if: 

-
[image: image104.wmf]aveadjust

enablePlcW

 is one, [image: image105.wmf]ctive

tonalMdctA

is zero and there is no transition having a larger frame size than a normal TCX20 frame; and

-
the lost frame is considered to be a non-tonal frame, which requires that the TCX_Tonality flag array contains five or less ones or one out of the last three frames is not TCX20.
If a MDCT-based PLC mode is selected and [image: image106.wmf]igf

is one, some missing information are added with the intelligent gap filling concealment.


*** End change 11 ***

*** Start change 12 ***
5.4.2.3
MDCT frame repetition with sign scrambling

The excitation of the concealed frame (input to FDNS) [image: image107.wmf])
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For any lost frame following a received frame, the initial value is reset:
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If the last 2 spectra are coded using TCX5, then the one with smaller energy is chosen.

The spectrum [image: image115.wmf])
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 is faded towards noise as described in subclause 5.4.6.1.3.2.1.


*** End change 12 ***

*** Start change 13 ***
5.4.2.4
Tonal MDCT concealment using phase prediction

5.4.2.4.1
Overview

The phase prediction 
described in subclause 5.4.2.4.3 is performed on the spectral coefficients belonging to tonal components found using the peak detection described in subclause 5.4.2. For the spectral coefficients not belonging to the tonal components, the sign scrambling is applied as described in subclause 5.4.2.3.

5.4.2.4.2
Peak detection of tonal components

Peak detection is performed if the current frame is lost but the previous frame has been received.
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where 
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 being the number of spectral coefficients.  A minimum significant value of a spectral line in the power spectrum is assured by this operation:
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If the change of the pitch lag between the last and the second last frame is larger or equal than 0.25 or the pitch lag is smaller than 10ms (corresponding to 
[image: image155.wmf]Hz
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), the index of the fundamental frequency is set to zero. Otherwise the index of the fundamental frequency is determined as:
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10 strongest peaks are found at the positions 
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An envelope of each power spectrum is calculated using a moving average filter:



[image: image183.wmf][

]

(

)

(

)

ë

û

ë

û

{

}

1

,

5

.

1

,

59

.

7

2

/

2

/

-

-

Î

×

=

å

+

-

=

m

m

y

i

P

FL

k

Envelope

FL

k

FL

k

i

y

y

.
(129)

The filter length [image: image184.wmf]FL

 depends on the index of the fundamental frequency and is limited to the range [11,23], as shown in Table 1. If the fundamental frequency is not available or not reliable, the filter length FL is set to 15, otherwise:
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Table 8: Filter length depending on the fundamental frequency

	F0
	FL

	0
	15

	<= 10
	11

	>= 22
	23
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The smoothed power spectra are calculated as follows:


[image: image188.wmf][

]

{

}

1

,

5

.

1

),

1

(

75

.

0

)

(

)

1

(

75

.

0

)

(

]

[

]

[

]

[

smoothed

-

-

Î

+

×

+

+

-

×

=

m

m

y

k

P

k

P

k

P

k

P

y

y

y

y


(131)



5.4.2.4.2.1
Detection of the peak candidates

If the smoothed spectrum 
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and


[image: image203.wmf]]

1

,...,

1

[

),

1

(

)

(

]

1

[

]

1

[

-

+

=

+

³

-

-

r

m

m

i

k

x

for

x

P

x

P


(133)

It is also allowed for an [image: image204.wmf]]

1

,...,

1

[

'

-

+

Î

r

i

k

x

 that [image: image205.wmf])

1

(

)

(

'

]

1

[

'

]

1

[

+

<

-

-

x

P

x

P

m

m

 is true, but only if [image: image206.wmf])

1

(

)

(

3

'

]

1

[

'

]

1

[

+

³

×

-

-

x

P

x

P

m

m

and if there is a 
[image: image208.wmf]r

i

j

k

<

<

for which: 



[image: image210.wmf])

(

)

(

)

(

)

1

(

2

]

1

[

'

]

1

[

'

]

1

[

'

]

1

[

j

P

x

P

x

P

x

P

m

m

m

m

-

-

-

-

£

+

×


(134)

and
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The left foot is defined in the same way as the right foot, but on the left side of the bin [image: image212.wmf]k

.
The local maximum [image: image213.wmf]max
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 is then found between the left and the right foot. 
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If the change of the pitch between the last and the second last frame is smaller then 0.5, then for each
-
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with 
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For all bins not belonging to peaks or harmonics the threshold is set as:
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Note: The base threshold 7.59, as given in equation 129, corresponds to 
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5.4.2.4.2.2
Final detection of the tonal components

After setting the thresholds [image: image245.wmf])
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 as described in subclause 5.4.2.4.2.1, peaks detected in frame 
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the right and left foot of the peak is searched for in 
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. The algorithm for the foot search is the same as the one in subclause 5.4.2.4.2.1.

The local maximum [image: image253.wmf]max
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 is then found between the left and the right foot. 

A tonal component is defined as the set of spectral bins [image: image254.wmf]]
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5.4.2.4.3
Phase prediction

For all found tonal components [image: image257.wmf]Tones

I

, that include spectrum peaks and their surroundings, as described in subclause 5.4.2.4.2.2, the MDCT phase prediction is used. For all other spectrum coefficients sign scrambling described in subclause 5.4.2.3 is used.


The phases  are derived for each bin of a tonal component as:
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The fractional part [image: image265.wmf]l
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 is given by:
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with a given in Table 2, depending on the neighboring bins around a spectral peak [image: image267.wmf]max
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Table 9: Variable a from equation (143)
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Where the bandwidth b is 7, the maximum ratio [image: image273.wmf]mr

is 44.8 and the constant G is [image: image274.wmf]36

.

1

2

1

×

.
The phase shift, being  the same for every spectrum bin in [image: image275.wmf]Tone
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, is derived as follows
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where [image: image278.wmf]max
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 is the index of the bin closest to the peak and [image: image279.wmf]l

D

is the fractional part (i.e. distance of the peak from [image: image280.wmf]max

i

 given as the fractional number of bins).
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where 
[image: image286.wmf]5
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 for the first concealed frame and 
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 is increased for 1 for every consecutive frame loss. The correspondingt MDCT bins are estimated as:
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*** End change 13 ***

*** Start change 14 ***
5.4.2.6
Intelligent gap filling

The intelligent gap filling tool is applied on the constructed signal, generated from one of the three MDCT-based TCX PLC methods, as described in [5], subclause 6.2.2.3.8. However, with increasing number of lost frames, the tiled IGF signal gets further attenuated by changing the IGF gain factor for each scale factor band. 

In case of a lost frame, the IGF gain factors calculated in [5] subclause 6.2.2.3.8.3.8 firstly get limited to the maximum value of 12. After that, the gain factors get changes as follows:
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where [image: image292.wmf])
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k

g

 is the IGF gain factor at scale factor band [image: image293.wmf]k

and [image: image294.wmf]nbLostCmpt

are the number of consecutively lost frames.


*** End change 14 ***

*** Start change 15 ***
5.4.5.5
Recovery after TCX MDCT concealment

During recovery after TCX MDCT concealment fading the background level as described in 5.4.6.1.3.1, the overlap-add buffer is rescaled by multiplying each element of it with the latest target background noise level 
[image: image295.wmf]cng

g

(see equation 109).

*** End change 15 ***

*** Start change 16 ***
5.4.6.1.1
Background level tracing for rates 48, 96 and 128 kbps

A background noise level is traced in the time domain using a simplified version of the minimum statistics algorithm [7]. The tracing depends on the class being transmitted in the bitstream: It is performed for UC only. 

In contrast to the FD-CNG - which also makes use of the minimum statistics approach (see [5], subclause 4.4.3) - the noise level estimation is not carried for each spectral band separately, but directly in the time domain. The background level tracing delivers therefore an estimate of the total noise level. Furthermore, the bias compensation is disregarded in this application. Tracing of the noise level is hence achieved by computing a smoothed version of the decoder output frame amplitude and by searching for the minimum smoothed amplitude over a sliding temporal window.

[…]


*** End change 16 ***

*** Start change 17 ***
5.4.6.1.3
MDCT frame repetition with sign scrambling

In the case of TCX frequency domain concealment, i.e. frame repetition with sign scrambling as stated in subclause 5.4.2.3 and/or tonal concealment using phase prediction as stated in subclause 5.4.2.4, the following applies.

5.4.6.1.3.1
Fading to background level

The time domain signal is faded towards a target background noise level as described in equation (107) and (107a) . The initial gain is 1. The derivation of  [image: image297.wmf]alpha

 is outlined in subclause 5.4.6.1.4.

At rates 9.6, 16.4 and 24.4kbps the target level 
[image: image298.wmf]cng

g

)

 is derived during the first lost frame based on the background noise spectrum derived by CNG during clean channel decoding (section 4.3 of [5]) as stated in subclause 5.3.4.2.1 under a).

At rates 48, 96 and 128kbps the target level 
[image: image299.wmf]cng

g

)

 is gained from the background level tracing as described in subclause 5.4.6.4.
The gain compensation for the LPC synthesis / de-emphasis as given in equation (109) is applied, see also subsection 5.2.5.
5.4.6.1.3.2
Fading to background spectral shape

The fading to background spectral shape is achieved by the following fading procedures, taking place in parallel:

a)
The excitation itself is faded towards white noise in the frequency domain prior to the FDNS, on which a tilt is applied.

b)
The excitation is shaped by FDNS towards a previously measured background shape.

c)
The LTP is faded out.

5.4.6.1.3.2.1
Fading the excitation to noise

For 9.6, 16.4 and 24.4kbps, the sign scrambled excitation (input to FDNS, see subclause 5.4.2.3) is faded towards a white noise, on which a tilt is applied prior to the fading procedure. The method is based on the following parameters: the last received excitation spectrum [image: image300.wmf])
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 (derived similar to the clean channel operation) and a damping factor [image: image302.wmf]dampingFac

. 

The tilt factor is given by
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Subsequently a tilt vector is derived as
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The[image: image306.wmf]or

randomVect

given by equation (123) then gets multiplied with the tilt to achieve a target noise vector with the desired tilt:
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The energy of this target noise vector is derived
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and the energy of the last excitation is derived
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The excitation is then derived as follows:
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with [image: image315.wmf])
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is given by equation (122). The fading speed controlled by [image: image317.wmf]dampingFac

 as described in subclause 5.4.6.1.4.

5.4.6.1.3.2.2
Shaping the excitation towards the background shape

The excitation is shaped towards a target spectral shape by altering the LPC coefficients. The fading from the last good LPC coefficients to the target LPC coefficients is performed in the LSF domain as follows:


[image: image319.wmf]target

]

1

[

]

[

)

1

(

f

alpha

f

alpha

f

m

m

×

-

+

×

=

-


(214)

where:
[image: image320.wmf][
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 are LPC coefficients in the LSF domain of the current frame;
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 are LPC coefficients in the LSF domain of the previous frame;
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 are the target LPC coefficients, derived according to formula 111

[image: image323.wmf]alpha

 is the fading factor as described in subclause 5.3.4.2.3, but limited to the minimum value of 0.8.


void
(215)

For 9.6, 16.4 and 24.4kbps, the target spectral shape of the excitation is derived during the first lost frame based on the background noise spectrum derived by CNG during clean channel decoding (see section 4.3 of [5]). Its derivation is performed as described in subclause 5.3.4.2.2 for the harmonic excitation.

For 48, 96 and 128kbps, the target spectral shape of the excitation is the short term mean of the last three LPC coefficient sets. Its derivation is performed as described in subclause 5.3.4.2.2 for the innovative excitation.

The achieved LPC is converted into FDNS parameters as follows: 
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where [image: image326.wmf]k

a

 are the LPC coefficients. The two signals [image: image327.wmf]re

 and [image: image328.wmf]im

 get zero filled to the length of 128 before a complex Fourier transform of length 128 will be applied on them to receive the real part [image: image329.wmf]Re

 and the imaginary part [image: image330.wmf]Im

(see [5], subsection 5.1.4). The FDNS parameters will finally be obtained as:
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5.4.6.1.3.2.3
LTP fade-out

The LTP continues to run during concealment. The LTP lag is kept constant. The LTP gain is faded towards zero as follows:
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where:
[image: image333.wmf][
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 is the LTP gain of the current frame;


[image: image334.wmf][

]

1

-

m

ltp

g

 is the LTP gain of the previous frame;


[image: image335.wmf]dampingFac

 is the damping factor, its derivation is outlined in subclause 5.4.6.1.4.


*** End change 17 ***

*** Start change 18 ***
5.4.6.1.5 Waveform adjustment 

The fade out is performed as described in section 5.4.6.1.3, just that no lpc gain compensation (see section 5.2.5) takes place.


*** End change 18 ***

*** Start change 19 ***
5.3.2.1.1
SWB time domain bandwidth extension

The concealment for SWB TD BWE works for 13.2 kbps, 16.4 kbps, 24.4 kbps and 32 kbps. The algorithm aims to reconstruct the high band of the current lost frame for SWB TD BWE. The reconstruction of the lost frame depends on at least one of the following gain adjustment information: the coder type of the previous frame, the frame class of the last good received frame, the frame class of the current frame, the number of the consecutive lost frame, the energies and the tilts of the low band of both the current frame and the previous frame.

There are gain shapes which are also the subframe gains, global frame gain and LSF should be reconstructed when the current frame is lost. The reconstruction of the LSF information is usually copying from the previous frame. The reconstruction of the subframe gains of the lost frame is based on the subframe gains and the subframe gain gradients of at least one frame before the current frame and adjusted by some of the above gain adjustment information. The reconstruction of the global frame gain of the lost frame is based on the global frame gain of at least one frame before the current frame and the global frame gain gradient of the current frame and adjusted by some of the above gain adjustment information.

The initial high band signal of the current lost frame is synthesized according to the decoding parameters of the frame prior to the current lost frame, specifically it is synthesized by passing the high band excitation through the synthesis filter, where the high band excitation is obtained from the low band excitation and synthesis filter is obtained from the reconstructed LSF parameters. Then the initial synthesized high band signal is adjusted by the reconstructed global frame gain and at least two of the reconstructed subframe gains of the current lost frame. Finally, the high band of the current lost frame is reconstructed.

*** End change 19 ***

*** Start change 20 ***
5.3.2.1.1.1
The reconstruction of the global frame gain

For single frame loss: determining the frame class of the current frame, the tilts of the current frame and the previous frame, the energies of the low parts and high parts from the low band of both the current frame and the previous frame. 

Assuming the three following conditions:

-
Condition 1: the frame class of the current frame is not UNVOICED_CLAS and UNVOICED_TRANSITION.
-
Condition 2: the tilt of the previous frame is less than 8.0.
-
Condition 3: the energy of low parts from the low band of the current frame[image: image336.wmf]EnLL

is more than [image: image337.wmf]prev
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is the energy of low parts from the low band of the current frame and the  [image: image345.wmf]prev
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 is the energy of high parts from the low band of the previous frame.
If all the above mentioned three conditions are met, the global frame gain of the current lost frame is described as follows:
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where the[image: image347.wmf]ratio

En

 is calculated by:
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where [image: image350.wmf]En

 is the high band excitation energy of the current frame, [image: image351.wmf]prev

En

 is the high band excitation energy of the previous frame.

Then if the tilt of the low band of the current frame [image: image352.wmf]tilt

 is more than that of the previous frame [image: image353.wmf]prev

tilt

, the global frame gain is updated as follows:
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If the above mentioned three conditions are not met, but the following three conditions are met:

…

*** End change 20 ***

*** Start change 21 ***
5.3.2.1.1.2
The reconstruction of the gain attenuation factor
Reconstruct the gain attenuation factor according to the following conditions: the coder type of the previous frame, the frame class of the last good received frame, and the energies of the low band of both the current frame and the previous frame, the number of the consecutive lost frames. The detail processing is as follows:

For single frame loss, judging the following three conditions:

-
Condition 1: the energy of the shaped excitation [image: image356.wmf])
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-
Condition 2: The coder type of the previous frame is not UNVOICED.
-
Condition 3: The frame class of the last good received frame is not UNVOICED_CLAS.
If condition1, 2 and 3 are met:

The gain attenuation factor [image: image360.wmf]e
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 to the shaped excitation [image: image361.wmf])
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Otherwise 

-
Condition 4: the energy of the shaped excitation [image: image363.wmf])
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Condition 5: the energy of low parts from the low band of the current frame[image: image367.wmf]EnLL

is more than[image: image368.wmf]prev
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 is the energy of high parts from the low band of the previous frame.

-
Condition 6: The coder type of the previous frame is not UNVOICED, or the type of the last good received is not UNVOICED_CLAS or the tilt of the previous frame is more than 5.0.

If condition 4, 5 and 6 are met, the gain attenuation factor [image: image373.wmf]e
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is calculated as follows:
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For multiple frame losses:

If the energy of the shaped excitation [image: image375.wmf])
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Otherwise if condition4, 5 and 6 are met, the gain attenuation factor [image: image381.wmf]e
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factor

is as follows:
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Use the [image: image383.wmf]e
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to the subframe gains and the shaped excitation [image: image385.wmf])
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Use the reconstructed information including subframe gains, global frame gain and LSFs to reconstruct the high band signal of the lost frame.


*** End change 21 ***

*** Start change 22 ***
5.3.2.1.1.3
Specifics for rates 13.2 and 32 kbps

Calculating the subframe gain  gradients of the previous frame and the frame immediately prior to the previous frame are described as follows:
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where [image: image388.wmf]4
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are the subframe gains  of the frame immediately prior to the previous frame. 
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If the coder type of the previous frame is UNVOICED, or the frame class of the last good received frame is UNVOICED_CLASS, and the[image: image391.wmf])
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Otherwise, if [image: image394.wmf])
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 is positive, the subframe gain  template [image: image395.wmf])
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Otherwise, the subframe gain  template [image: image397.wmf])
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The other gain subframe gain templates [image: image399.wmf]3
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Otherwise, if [image: image404.wmf])
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Otherwise
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according to the coder type of the previous frame, the frame class of the last good received frame and the number of consecutive lost frame. The global frame gain gradient[image: image411.wmf]attn
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 is also determined by the upper three conditions, it is initialized to 1.0: 

If the coder type of the previous frame is UNVOICED or the frame class of the last good received frame is UNVOICED_CLAS, and there is single frame loss, then:
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Otherwise if the coder type of the previous frame is UNVOICED or the frame class of the last good received frame is UNVOICED_CLAS Then:
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Otherwise, if there are multiple frame losses, then:
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Otherwise then:
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where [image: image420.wmf]3
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are the subframe gains of the current frame.

The global frame gain of the current frame is calculated with [image: image421.wmf]attn
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 described as follows:
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where the [image: image424.wmf]prev

gf

 is the global frame gain of the previous frame.

*** End change 22 ***
*** End of changes ***
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