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A.2.3
Profiles (informative)

As there are several ways (usage profiles) how data transfer can be arranged by using the FTP, this chapter contains practical considerations how the communications can be set up. Guidance is given for client-server arrangements, session establishments, time outs, the handling of the files (in RAM or disk). Example batch file is described for the case that the sending FTP client uses files. If instead (logical) files are sent directly from the client's RAM memory, then the procedure can be in principle similar though no script file would then be needed.

At the LEMF side, FTP server process is run, and at MF, FTP client. No FTP server (which could be accessed from outside the operator network) shall run in the MF. The FTP client can be implemented in many ways, and here the FTP usage is presented with an example only. The FTP client can be implemented by a batch file or a file sender program that uses FTP via an API. The login needs to occur only once per e.g. <destaddr> & <leauser> -pair. Once the login is done, the files can then be transferred just by repeating 'mput' command and checking the transfer status (e.g. from the API routine return value). To prevent inactivity timer triggering, a dummy command (e.g. 'pwd') can be sent every T seconds (T should be less than L, the actual idle time limit). If the number of FTP connections is wanted to be as minimised as possible, the FTP file transfer method "B" is to be preferred to the method A (though the method A helps more the LEMF by pre-sorting the data sent).

Simple example of a batch file extract:

FTP commands usage scenario for transferring a list of files:
To prevent FTP cmd line buffer overflow the best way is to use wildcarded file names, and let the FTP implementation do the file name expansion (instead of shell). The number of files for one mput is not limited this way:
ftp <flags> <destaddr>

  user <leauser> <leapasswd>

  cd <destpath>

  lcd <srcpath>

  bin

  mput <files>

  nlist <lastfile> <checkfile>

  close

EOF

This set of commands opens an FTP connection to a LEA site, logs in with a given account (auto-login is disabled), transfers a list of files in binary mode, and checks the transfer status in a simplified way.

Brief descriptions for the FTP commands used in the example:

user <user-name> <password>
Identify the client to the remote FTP server.

cd <remote-directory>
Change the working directory on the remote machine to remote-directory.

lcd <directory>
Change the working directory on the local machine.

bin
Set the file transfer type to support binary image transfer.

mput <local-files>
Expand wild cards in the list of local files given as arguments and do a put for each file in the resulting list. Store each local file on the remote machine.

nlist <remote-directory> <local-file>
Print a list of the files in a directory on the remote machine. Send the output to local-file.

close
Terminate the FTP session with the remote server, and return to the command interpreter. Any defined macros are erased.
The parameters are as follows:

<flags> 
contains the FTP command options, e.g. "-i -n -V -p" which equals to 'interactive prompting off', 'auto-login disabled', 'verbose mode disabled', and 'passive mode enabled'. (These are dependent on the used ftp- version.)

<destaddr>
contains the IP address or DNS address of the destination (LEA).

<leauser>
contains the receiving (LEA) username.

<leapasswd>
contains the receiving (LEA) user's password.

<destpath>
contains the destination path.

<srcpath>
contains the source path.

<files>
wildcarded file specification (matching the files to be transferred).

<lastfile>
the name of the last file to be transferred.

<checkfile>
is a (local) file to be checked upon transfer completion; if it exists then the transfer is considered successful.

The FTP application should to do the following things if the checkfile is not found:

-
keep the failed files.

-
raise 'file transfer failure' error condition (i.e. send alarm to the corresponding LEA).

-
the data can be buffered for a time that the buffer size allows. If that would finally be exhausted, DF would start dropping the corresponding target's data until the transfer failure is fixed.

-
the transmission of the failed files is retried until the transfer eventually succeeds. Then the DF would again start collecting the data.

-
upon successful file transfer the sent files are deleted from the DF.

The FTP server at LEMF shall not allow anonymous login of an FTP client.

It is required that FTP implementation guarantees that LEMF will start processing data only after data transfer is complete.

The following implementation example addresses a particular issue of FTP implementation. It is important however to highlight that there are multiple ways of addressing the problem in question, and therefore the given example does not in any way suggest being the default one.
· MF sends data with a filename, which indicates that the file is temporary. Once data transfer is complete, MF renames temporary file into ordinary one (as defined in C.2.2).
The procedure for renaming filename should be as follow:
1) open FTP channel (if not already open) from MF to LEMF;
2) sends data to LEMF using command “put” with temporary filename;
3) after MF finished to send the file, renaming it as ordinary one with command “ren”. 

Brief descriptions for the FTP commands used in the example:
ren <from-name> <to-name>




renaming filename from-name to to-name.

If the ftp-client want to send file to LEMF using the command “mput” (e.g. MF stored many IRI files and want to send all together with one command), every filename transferred successfully must be renamed each after command “mput” ended.


* * *    Next Modification    * * * *

C.2.6
Profiles (informative)
As there are several ways (usage profiles) how data transfer can be arranged by using the FTP, this clause contains practical considerations how the communications can be set up. Guidance is given for client‑server arrangements, session establishments, time outs, the handling of the files (in RAM or disk). Example batch file is described for the case that the sending FTP client uses files. If instead (logical) files are sent directly from the client's RAM memory, then the procedure can be in principle similar though no script file would then be needed.

At the LEMF side, FTP server process is run, and at MF, FTP client. No FTP server (which could be accessed from outside the operator network) shall run in the MF. The FTP client can be implemented in many ways, and here the FTP usage is presented with an example only. The FTP client can be implemented by a batch file or a file sender program that uses FTP via an API. The login needs to occur only once per e.g. <destaddr> and <leauser> ‑ pair. Once the login is done, the files can then be transferred just by repeating "mput" command and checking the transfer status (e.g. from the API routine return value). To prevent inactivity timer triggering, a dummy command (e.g. "pwd") can be sent every
T seconds (T should be less than L, the actual idle time limit). If the number of FTP connections is wanted to be as minimized as possible, the FTP file transfer method "B" is to be preferred to the method A (though the method A helps more the LEMF by pre‑sorting the data sent).

Simple example of a batch file extract:

FTP commands usage scenario for transferring a list of files:

To prevent FTP cmd line buffer overflow the best way is to use wildcarded file names, and let the FTP implementation do the file name expansion (instead of shell). The number of files for one mput is not limited this way:

ftp <flags> <destaddr>

 user <leauser> <leapasswd>

 cd <destpath>

 lcd <srcpath>

 bin

 mput <files>

 nlist <lastfile> <checkfile>

 close

EOF

This set of commands opens an FTP connection to a LEA site, logs in with a given account (auto‑login is disabled), transfers a list of files in binary mode, and checks the transfer status in a simplified way.

Brief descriptions for the FTP commands used in the example:

user <user‑name> <password>
Identify the client to the remote FTP server.

cd <remote‑directory>
Change the working directory on the remote machine to remote‑directory.

lcd <directory>
Change the working directory on the local machine.

bin
Set the file transfer type to support binary image transfer

mput <local‑files>
Expand wild cards in the list of local files given as arguments and do a put for each file in the resulting list. Store each local file on the remote machine.

nlist <remote‑directory> <local‑file>
Print a list of the files in a directory on the remote machine. Send the output to local‑file.

close
Terminate the FTP session with the remote server, and return to the command interpreter. Any defined macros are erased.

The parameters are as follows:

<flags> contains the FTP command options, e.g. "‑i ‑n ‑V ‑p" which equals to "interactive prompting off", "auto‑login disabled", "verbose mode disabled", and "passive mode enabled". (These are dependent on the used ftp‑version.)

<destaddr> contains the IP address or DNS address of the destination (LEA).

<leauser> contains the receiving (LEA) username.

<leapasswd> contains the receiving (LEA) user's password.

<destpath> contains the destination path.

<srcpath> contains the source path.

<files> wild carded file specification (matching the files to be transferred).

<lastfile> the name of the last file to be transferred.

<checkfile> is a (local) file to be checked upon transfer completion; if it exists then the transfer is considered successful.

The FTP application should to do the following things if the check file is not found:

‑
keep the failed files;

‑
raise "file transfer failure" error condition (i.e. send alarm to the corresponding LEA);

‑
the data can be buffered for a time that the buffer size allows. If that would finally be exhausted, DF would start dropping the corresponding target's data until the transfer failure is fixed;

‑
the transmission of the failed files is retried until the transfer eventually succeeds. Then the DF would again start collecting the data;

‑
upon successful file transfer the sent files are deleted from the DF.

The FTP server at LEMF shall not allow anonymous login of an FTP client.

It is required that FTP implementation guarantees that LEMF will start processing data only after data transfer is complete.

The following implementation example addresses a particular issue of FTP implementation. It is important however to highlight that there are multiple ways of addressing the problem in question, and therefore the given example does not in any way suggest being the default one.
· MF sends data with a filename, which indicates that the file is temporary. Once data transfer is complete, MF renames temporary file into ordinary one (as defined in F.3.2.2).
The procedure for renaming filename should be as follow:
1) open FTP channel (if not already open) from MF to LEMF;
2) sends data to LEMF using command “put” with temporary filename;
3) after MF finished to send the file, renaming it as ordinary one with command “ren”. 

Brief descriptions for the FTP commands used in the example:
ren <from-name> <to-name>




renaming filename from-name to to-name.

If the ftp-client want to send file to LEMF using the command “mput” (e.g. MF stored many IRI files and want to send all together with one command), every filename transferred successfully must be renamed each after command “mput” ended.


* * *    END OF CHANGES   * * * *
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