Page 1

3GPP TSG SA WG3 (Security) meeting #42
S3-060101
Bangalore, India, 6 - 9 Feb 2006
Agenda Item:

3GPP TSG-SA 3 LI Meeting #20
Tdoc S3LI06_005r1
US - Las Vegas , 17-19 January 2006

	CR-Form-v7.1

	CHANGE REQUEST

	

	(

	33.108
	CR
	0083
	(

rev
	-
	(

Current version:
	7.3.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Informative example of FTP implementation across HI2/HI3.

	
	

	Source:
(

	SA3 LI (Wind)

	
	

	Work item code:
(

	LI-7A
	
	Date: (

	18/1/2006

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-7

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Ph2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

 Rel-7
(Release 7)

	
	

	Reason for change:
(

	ETSI TC LI meeting #10 in Sorrento approved CR105 (10litd040r1).

Informative guidance for implementing a way to resolve the problem connected to the transmission of the IRI/CC.

	
	

	Summary of change:
(

	Giving example for implementing a way to resolve trouble sending file through FTP protocol

	
	

	Consequences if
(

not approved:
	Possible losses at the LEMF of file or parsing incomplete (not yet transferred totally) files (both HI2/HI3). Misalignment with TC 101.671.

	
	

	Clauses affected:
(

	A.2.3 C.2

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

A.2.3
Profiles (informative)

As there are several ways (usage profiles) how data transfer can be arranged by using the FTP, this chapter contains practical considerations how the communications can be set up. Guidance is given for client-server arrangements, session establishments, time outs, the handling of the files (in RAM or disk). Example batch file is described for the case that the sending FTP client uses files. If instead (logical) files are sent directly from the client's RAM memory, then the procedure can be in principle similar though no script file would then be needed.

At the LEMF side, FTP server process is run, and at MF, FTP client. No FTP server (which could be accessed from outside the operator network) shall run in the MF. The FTP client can be implemented in many ways, and here the FTP usage is presented with an example only. The FTP client can be implemented by a batch file or a file sender program that uses FTP via an API. The login needs to occur only once per e.g. <destaddr> & <leauser> -pair. Once the login is done, the files can then be transferred just by repeating 'mput' command and checking the transfer status (e.g. from the API routine return value). To prevent inactivity timer triggering, a dummy command (e.g. 'pwd') can be sent every T seconds (T should be less than L, the actual idle time limit). If the number of FTP connections is wanted to be as minimised as possible, the FTP file transfer method "B" is to be preferred to the method A (though the method A helps more the LEMF by pre-sorting the data sent).

Simple example of a batch file extract:

FTP commands usage scenario for transferring a list of files:
To prevent FTP cmd line buffer overflow the best way is to use wildcarded file names, and let the FTP implementation do the file name expansion (instead of shell). The number of files for one mput is not limited this way:
ftp <flags> <destaddr>

 user <leauser> <leapasswd>

 cd <destpath>

 lcd <srcpath>

 bin

 mput <files>

 nlist <lastfile> <checkfile>

 close

EOF

This set of commands opens an FTP connection to a LEA site, logs in with a given account (auto-login is disabled), transfers a list of files in binary mode, and checks the transfer status in a simplified way.

Brief descriptions for the FTP commands used in the example:

user <user-name> <password>
Identify the client to the remote FTP server.

cd <remote-directory>
Change the working directory on the remote machine to remote-directory.

lcd <directory>
Change the working directory on the local machine.

bin
Set the file transfer type to support binary image transfer.

mput <local-files>
Expand wild cards in the list of local files given as arguments and do a put for each file in the resulting list. Store each local file on the remote machine.

nlist <remote-directory> <local-file>
Print a list of the files in a directory on the remote machine. Send the output to local-file.

close
Terminate the FTP session with the remote server, and return to the command interpreter. Any defined macros are erased.
The parameters are as follows:

<flags>
contains the FTP command options, e.g. "-i -n -V -p" which equals to 'interactive prompting off', 'auto-login disabled', 'verbose mode disabled', and 'passive mode enabled'. (These are dependent on the used ftp- version.)

<destaddr>
contains the IP address or DNS address of the destination (LEA).

<leauser>
contains the receiving (LEA) username.

<leapasswd>
contains the receiving (LEA) user's password.

<destpath>
contains the destination path.

<srcpath>
contains the source path.

<files>
wildcarded file specification (matching the files to be transferred).

<lastfile>
the name of the last file to be transferred.

<checkfile>
is a (local) file to be checked upon transfer completion; if it exists then the transfer is considered successful.

The FTP application should to do the following things if the checkfile is not found:

-
keep the failed files.

-
raise 'file transfer failure' error condition (i.e. send alarm to the corresponding LEA).

-
the data can be buffered for a time that the buffer size allows. If that would finally be exhausted, DF would start dropping the corresponding target's data until the transfer failure is fixed.

-
the transmission of the failed files is retried until the transfer eventually succeeds. Then the DF would again start collecting the data.

-
upon successful file transfer the sent files are deleted from the DF.

The FTP server at LEMF shall not allow anonymous login of an FTP client.

It is required that FTP implementation guarantees that LEMF will start processing data only after data transfer is complete.

The following implementation example addresses a particular issue of FTP implementation. It is important however to highlight that there are multiple ways of addressing the problem in question, and therefore the given example does not in any way suggest being the default one.
· MF sends data with a filename, which indicates that the file is temporary. Once data transfer is complete, MF renames temporary file into ordinary one (as defined in C.2.2).
The procedure for renaming filename should be as follow:
1) open FTP channel (if not already open) from MF to LEMF;
2) sends data to LEMF using command “put” with temporary filename;
3) after MF finished to send the file, renaming it as ordinary one with command “ren”.

Brief descriptions for the FTP commands used in the example:
ren <from-name> <to-name>

renaming filename from-name to to-name.

If the ftp-client want to send file to LEMF using the command “mput” (e.g. MF stored many IRI files and want to send all together with one command), every filename transferred successfully must be renamed each after command “mput” ended.

* * * Next Modification * * * *

C.2.6
Profiles (informative)
As there are several ways (usage profiles) how data transfer can be arranged by using the FTP, this clause contains practical considerations how the communications can be set up. Guidance is given for client‑server arrangements, session establishments, time outs, the handling of the files (in RAM or disk). Example batch file is described for the case that the sending FTP client uses files. If instead (logical) files are sent directly from the client's RAM memory, then the procedure can be in principle similar though no script file would then be needed.

At the LEMF side, FTP server process is run, and at MF, FTP client. No FTP server (which could be accessed from outside the operator network) shall run in the MF. The FTP client can be implemented in many ways, and here the FTP usage is presented with an example only. The FTP client can be implemented by a batch file or a file sender program that uses FTP via an API. The login needs to occur only once per e.g. <destaddr> and <leauser> ‑ pair. Once the login is done, the files can then be transferred just by repeating "mput" command and checking the transfer status (e.g. from the API routine return value). To prevent inactivity timer triggering, a dummy command (e.g. "pwd") can be sent every
T seconds (T should be less than L, the actual idle time limit). If the number of FTP connections is wanted to be as minimized as possible, the FTP file transfer method "B" is to be preferred to the method A (though the method A helps more the LEMF by pre‑sorting the data sent).

Simple example of a batch file extract:

FTP commands usage scenario for transferring a list of files:

To prevent FTP cmd line buffer overflow the best way is to use wildcarded file names, and let the FTP implementation do the file name expansion (instead of shell). The number of files for one mput is not limited this way:

ftp <flags> <destaddr>

 user <leauser> <leapasswd>

 cd <destpath>

 lcd <srcpath>

 bin

 mput <files>

 nlist <lastfile> <checkfile>

 close

EOF

This set of commands opens an FTP connection to a LEA site, logs in with a given account (auto‑login is disabled), transfers a list of files in binary mode, and checks the transfer status in a simplified way.

Brief descriptions for the FTP commands used in the example:

user <user‑name> <password>
Identify the client to the remote FTP server.

cd <remote‑directory>
Change the working directory on the remote machine to remote‑directory.

lcd <directory>
Change the working directory on the local machine.

bin
Set the file transfer type to support binary image transfer

mput <local‑files>
Expand wild cards in the list of local files given as arguments and do a put for each file in the resulting list. Store each local file on the remote machine.

nlist <remote‑directory> <local‑file>
Print a list of the files in a directory on the remote machine. Send the output to local‑file.

close
Terminate the FTP session with the remote server, and return to the command interpreter. Any defined macros are erased.

The parameters are as follows:

<flags> contains the FTP command options, e.g. "‑i ‑n ‑V ‑p" which equals to "interactive prompting off", "auto‑login disabled", "verbose mode disabled", and "passive mode enabled". (These are dependent on the used ftp‑version.)

<destaddr> contains the IP address or DNS address of the destination (LEA).

<leauser> contains the receiving (LEA) username.

<leapasswd> contains the receiving (LEA) user's password.

<destpath> contains the destination path.

<srcpath> contains the source path.

<files> wild carded file specification (matching the files to be transferred).

<lastfile> the name of the last file to be transferred.

<checkfile> is a (local) file to be checked upon transfer completion; if it exists then the transfer is considered successful.

The FTP application should to do the following things if the check file is not found:

‑
keep the failed files;

‑
raise "file transfer failure" error condition (i.e. send alarm to the corresponding LEA);

‑
the data can be buffered for a time that the buffer size allows. If that would finally be exhausted, DF would start dropping the corresponding target's data until the transfer failure is fixed;

‑
the transmission of the failed files is retried until the transfer eventually succeeds. Then the DF would again start collecting the data;

‑
upon successful file transfer the sent files are deleted from the DF.

The FTP server at LEMF shall not allow anonymous login of an FTP client.

It is required that FTP implementation guarantees that LEMF will start processing data only after data transfer is complete.

The following implementation example addresses a particular issue of FTP implementation. It is important however to highlight that there are multiple ways of addressing the problem in question, and therefore the given example does not in any way suggest being the default one.
· MF sends data with a filename, which indicates that the file is temporary. Once data transfer is complete, MF renames temporary file into ordinary one (as defined in F.3.2.2).
The procedure for renaming filename should be as follow:
1) open FTP channel (if not already open) from MF to LEMF;
2) sends data to LEMF using command “put” with temporary filename;
3) after MF finished to send the file, renaming it as ordinary one with command “ren”.

Brief descriptions for the FTP commands used in the example:
ren <from-name> <to-name>

renaming filename from-name to to-name.

If the ftp-client want to send file to LEMF using the command “mput” (e.g. MF stored many IRI files and want to send all together with one command), every filename transferred successfully must be renamed each after command “mput” ended.

* * * END OF CHANGES * * * *

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

CR page 1

