Page 1

3GPP TSG-SA5 (Telecom Management) Meeting #30
S5-026733
Tampere, Finland, 19 – 23 August 2002

	CR-Form-v7

	CHANGE REQUEST

	

	(

	32.612
	CR
	003
	(

rev
	-
	(

Current version:
	4.2.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:
(

	Add Bulk CM IRP IS Enhancements for Rel-5

	
	

	Source:
(

	S5

	
	

	Work item code:
(

	OAM-NIM
	
	Date: (

	23/08/2002

	
	
	
	
	

	Category:
(

	C
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	Support of Validation, Preactivation, Modes

	
	

	Summary of change:
(

	Add new operations validation and preactivate. Add Mode parameters. Other changes.

	
	

	Consequences if
(

not approved:
	Valiadtion, Preactivation, Modes not supported.

	
	

	Clauses affected:
(

	2, 4,6,7,8,9,10, Annex A and B

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	X
	
	 O&M Specifications
	32.613,

32.614 CMIP (CR missing for the time being)

	
	

	Other comments:
(

	S5-026688
Rel-5 CR 32611 Additional Bulk CM IRP requirements for Rel-5 - Parent CR
S5-026733
Rel-5 CR 32612 Bulk CM IS - R5 Enhancements and New Methodology - Child CR
S5-026734
Rel-5 CR 32613 Bulk CM CORBA SS - R5 Enhancements - Grandchild CR

Introduction

Configuration Management (CM), in general, provides the operator with the ability to assure correct and effective operation of the 3G network as it evolves. CM actions have the objective to control and monitor the actual configuration on the Network Element (NEs) and Network Resources (NRs), and they may be initiated by the operator or by functions in the Operations Systems (OSs) or NEs.

CM actions may be requested as part of an implementation programme (e.g. additions and deletions), as part of an optimisation programme (e.g. modifications), and to maintain the overall Quality of Service. The CM actions are initiated either as a single actions on single NEs of the 3G network or as part of a complex procedure involving actions on many resources/objects in one or several NEs.

1
Scope

The present document (Bulk Configuration Management IRP: Information Service) defines an Integration Reference Point (IRP) through which an 'IRPAgent' (typically an Element Manager or Network Element) can communicate bulk Configuration Management related information to one or several 'IRPManagers' (typically Network Managers).

2
References

The following documents contain provisions, which, through reference in this text, constitute provisions of the present document.
· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

[1]
3GPP TS 32.101: "3G Telecom Management principles and high level requirements".

[2]
3GPP TS 32.102: "3G Telecom Management architecture".

[3]
3GPP TS 32.302: "Telecommunication Management; Notification Management;
Part 2: Notification Integration Reference Point; Information Service".

[4]
3GPP TS 32.622: "3G Configuration Management: Generic Network Resources IRP: NRM".

[5]
3GPP TS 32.642: "3G Configuration Management: UTRAN Network Resources IRP: NRM".

[6]
3GPP TS 32.652: "3G Configuration Management: GERAN Network Resources IRP: NRM".

[7]
3GPP TS 32.300: "Name Convention for Managed Objects".

[8]
3GPP TS 32.600: "3G Configuration Management: Concepts and requirements".
[9]
3GPP TS 32.312: "Generic IRP Management: Information Service".
[10]
3GPP TS 32.632: “3G Configuration Management: Core Network Resource IRP: NRM”
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply. For terms and definitions not found here, please refer to 3GPP TS 32.101 [1], 3GPP TS 32.102 [2] and 3GPP TS 32.600 [8].

Association: In general it is used to model relationships between Managed Objects. Associations can be implemented in several ways, such as:

(1) name bindings,

(2) reference attributes, and

(3) association objects.

This IRP stipulates that containment associations shall be expressed through name bindings, but it does not stipulate the implementation for other types of associations as a general rule. These are specified as separate entities in the object models (UML diagrams). Currently (in R99) however, all (non-containment) associations are modelled. by means of reference attributes of the participating MOs.

Data: is any information or set of information required to give software or equipment or combinations thereof a specific state of functionality.

Element Manager (EM): provides a package of end-user functions for management of a set of closely related types of Network Elements (NEs). These functions can be divided into two main categories:

· Element Management Functions for management of NEs on an individual basis. These are basically the same functions as supported by the corresponding local terminals.

· Sub-Network Management Functions that are related to a network model for a set of NEs constituting a clearly defined sub-network, which may include relations between the NEs. This model enables additional functions on the sub-network level (typically in the areas of network topology presentation, alarm correlation, service impact analysis and circuit provisioning).

IRP: See 3GPP TS 32.101 [1].

IRP Information Service (IS): See 3GPP TS 32.101 [1].

IRP Network Resource Model (NRM): See 3GPP TS 32.101 [1].

IRP Solution Set (SS): See 3GPP TS 32.101 [1].

Managed Element (ME): An instance of the Managed Object Class G3ManagedElement/ManagedElement.
Managed Object (MO): In the context of the present document, a Managed Object (MO) is a software object that encapsulates the manageable characteristics and behaviour of a particular Network Resource. The MO is instance of a MO class defined in a MIM/NRM. An MO class has attributes that provide information used to characterize the objects that belong to the class (the term "attribute " is taken from TMN and corresponds to a "property " according to CIM). Furthermore, a MO class can have operations that represent the behaviour relevant for that class (the term "operation " is taken from TMN and corresponds to a "method " according to CIM). An MO class may support notifications that provide information about an event occurrence within a network resource.

Managed Object Class (MOC): a description of all the common characteristics for a number of MOs, such as their attributes, operations, notifications and behaviour.

Managed Object Instance (MOI): an instance of a MOC, which is the same as a MO as described above.
Management Information Base (MIB): A MIB is an instance of an NRM and has some values on the defined attributes and associations specific for that instance. In the context of the present document , a MIB consist of (1) a Name space (describing the MO containment hierarchy in the MIB through Distinguished Names), (2) a number of Managed Objects with their attributes and (3) a number of Associations between these MOs. Also note that TMN (X.710 [7]) defines a concept of a Management Information Tree (also known as a Naming Tree) that corresponds to the name space (containment hierarchy) portion of this MIB definition. The following figure depicts the relationships between a Name space and a number of participating MOs (the shown association is of a non-containment type)

[image: image1.wmf]MO

Namespace (

containment

hierarhy)

Association

MIB

Figure 1: Relationships between a Name space and a number of participating MOs

Management Information Model (MIM): Also referred to as NRM – see the definition below. There is a slight difference between the meaning of MIM and NRM – the term MIM is generic and can be used to denote any type of management model, while NRM denotes the model of the actual managed telecommunications Network Resources (NRs).
Name space: A name space is a collection of names. The IRP name convention [7] restricts the name space to a hierarchical containment structure, including its simplest form - the one-level, flat name space. All Managed Objects in a MIB shall be included in the corresponding name space and the MIB/name space shall only support a strict hierarchical containment structure (with one root object). A Managed Object that contains another is said to be the superior (parent); the contained Managed Object is referred to as the subordinate (child). The parent of all MOs in a single name space is called a Local Root. The ultimate parent of all MOs of all managed systems is called the Global Root.

Network Element (NE): is a discrete telecommunications entity, which can be, managed over a specific interface e.g. the RNC.

Network Manager (NM): provides a package of end-user functions with the responsibility for the management of a network, mainly as supported by the EM(s) but it may also involve direct access to the NEs. All communication with the network is based on open and well-standardised interfaces supporting management of multi-vendor and multi-technology NEs.

Network Resource (NR): is a component of a NE, which can be identified as a discrete separate entity and is in an object oriented environment for the purpose of management represented by an abstract entity called Managed Object (MO).

Network Resource Model (NRM): a model representing the actual managed telecommunications Network Resources (NRs) that a System is providing through the subject IRP. An NRM describes Managed Object Classes (MOC), their associations, attributes and operations. The NRM is also referred to as "MIM" (see above) which originates from the ITU-T TMN.

Operator: is either

· a human being controlling and managing the network; or

· a company running a network (the 3G network operator).

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

CM
Configuration Management

CMIP
Common Management Information Protocol

CORBA
Common Object Request Broker Architecture

EM
Element Manager

FM
Fault Management

IRP
Integration Reference Point

ITU-T
International Telecommunication Union, Telecommunication Standardisation Sector

MIB
Management Information Base

MIM
Management Information Model

MO
Managed Object

MOC
Managed Object Class

MOI
Managed Object Instance

NE
Network Element

NM
Network Manager

NR
Network Resource

NRM
Network Resource Model

PM
Performance Management

SS
Solution Set
SW
Software

TM
Telecom Management
UML
Unified Modelling Language (OMG)

UMTS
Universal Mobile Telecommunications System

XML
EXtensible Markup Language

4
System Overview

4.1
System Context

Figure 4.1 and 4.2 identify system contexts of the IRP defined by the present specification in terms of its implementation called IRPAgent and the user of the IRPAgent, called IRPManager. For a definition of IRPManager and IRPAgent, see 3GPP TS 32.102 [2].

The IRPAgent implements and supports this IRP. The IRPAgent can reside in an Element Manager (EM) or a Network Element (NE) (see also [2] clause 8). In the former case, the interfaces (represented by a thick dotted line) between the EM and the NEs is not the subject of this IRP.

An IRPManager using this IRP shall choose one of the two System Contexts defined here, for each NE. For instance, if an EM is responsible for managing a number of NEs, the NM shall access this IRP through the EM and not directly to those NEs. For another IRP though, the System Context may be different.
As indicated in Figure 2 and Figure 3,the subject IRP needs to be complemented with the Notification IRP 3GPP TS 32.302 [3]. (This is to allow the IRP Manager to subscribe and unsubscribe to notifications issued by the IRP Agent).

Figure 2: System Context A

Figure 3: System Context B

4.2
Compliance rules

For general definitions of compliance rules related to qualifiers (Mandatory/Optional/Conditional) for operations, notifications and parameters (of operations and notifications) please refer to 3GPP TS 32.102 [2].
The following defines the meaning of Mandatory and Optional attributes and associations for Operations, in Solution Sets to the Bulk CMIRP:

· The IRPManager shall support all mandatory attributes/associations. The IRPManager shall be prepared to receive information related to mandatory as well as optional attributes/associations without failure; however the IRPManager does not have to support handling of the optional attributes/associations.

· The IRPAgent shall support all mandatory attributes/associations. It may support optional attributes/associations.

An IRPAgent that incorporates vendor-specific extensions must support normal communication with a 3GPP SA5-compliant IRPManager with respect to all mandatory and optional managed object classes, attributes, associations, operations, parameters and notifications without requiring the IRPManager to have any knowledge of the extensions.

Given that

· rules for vendor-specific extensions remain to be fully specified, and

· many scenarios under which IRPManager and IRPAgent interwork may exist,

it is recognised that in R4/R5 the IRPManager, even though it is not required to have knowledge of vendor-specific extensions, may be required to be implemented with an awareness that extensions can exist and behave accordingly.

4.3
Scope of Bulk CM Management Specification

Within the scope of this document it is specified how Bulk CM IRP IS allows an IRPManager to actively configure NEs over interface-N using an IRPAgent supporting Bulk CM IRP IS. It is not within the scope of this document to specify how Bulk CM IRP IS and the IRPAgent shall resolve any potentially conflicting CM management activities that could arise from either multiple concurrent active IRPManager management Bulk CM IRP sessions, any other IRP conflicting CM management activities, or any CM management activities outside of the scope of an IRP and interface-N. From a system perspective such potential conflicts need to be guarded against, but how this done e.g. operational procedures or implementation specific recovery in an IRPManager or IRPAgent, is beyond the scope of this document.

5
Modelling approach

This clause identifies the modelling approach adopted and used in this IRP.

The modelling approach adopted and used in this IRP is the same as that defined in 3GPP TS 32.622: "Generic Network Resources IRP: NRM" [4].

6
Information Object Classes

6.1
Information entities imported and local label

	Label reference
	Local label

	32.622, information object class, Top
	Top

	32.302 [3], information object class, NotificationIRP
	NotificationIRP

	32.302 [3], interface, notificationIRPNotification
	notificationIRPNotification

	32.622 [4], [information object class, GenericIRP
	GenericIRP

	32.622 [4], information object class, IRPAgent
	IRPAgent

	32.312 [9], information object class, ManagedGenericIRP
	ManagedGenericIRP

6.2
Class diagram

This sub-clause introduces the set of information object classes (IOCs) that encapsulate information within the IRPAgent. The intent is to identify the information required for the BulkCMIRP Agent implementation of its operations and notification emission. This sub-clause provides the overview of all support object classes in UML. Subsequent sub-clauses provide more detailed specification of various aspects of these support object classes.

6.2.1
Attributes and relations

[image: image2.wmf]BulkCmIRP

<<InfomationObjectClass>>

IRPAgent

<<InfomationObjectClass>>

1

1

ManagedEntity

<<ProxyClass>>

0..n

1

+content

0..n

+container

1

MIB

<<InfomationObjectClass>>

1..n

1..n

6.2.2
Inheritance
[image: image3.wmf]Top

<<InfomationObjectClass>>

GenericIRP

<<InfomationObjectClass>>

ManagedEntity

<<ProxyClass>>

ManagedGenericIRP

<<InfomationObjectClass>>

BulkCmIRP

<<InfomationObjectClass>>

6.3
Information object classes definition
6.3.1
BulkCMIRP
6.3.1.1
Definition

BulkCMIRP is the representation of the configuration management capabilities specified by this specification. This IOC inherits from ManagedGenericIRP IOC specified in TS.32.312 [9].

6.4
Network Resource Model (NRM)

NRMs for Bulk CM IRP are defined in other Network Resource IRP documents of CM, For Bulk CM IRP IS these are:

32.622: “3G Configuration Management: Generic Network Resources IRP: NRM” [4],
32.632: “3G Configuration Management: Core Network Resource IRP: NRM” [10],
32.642: “3G Configuration Management: UTRAN Network Resources IRP: NRM” [5],

32.652: “3G Configuration Management: GERAN Network Resources IRP: NRM” [6].

These NRM documents define all the MOCs and attributes that can be configuration managed by Bulk CM IRP IS.

7
Interface Definition

Clause 7.1 illustrates the operations and notifications defined as interfaces implemented and used by IRPAgent and IRPManager, described using UML notation (Interface in IRP Information Model is identical to concepts conveyed by stereotype <<interface>> of UML). Parameters and return status are not indicated.

The interfaces support multiple IRPManagers connected to an IRPAgent.

Configuration data files defined in clause 10 define bulk configuration management changes. The following configuration data file handling operations exist in the Itf-N.

· startSession

· endSession

· upload

· download

· validate

· preactivate

· activate

· fallback

· abortSessionOperation

· getSessionIds

· getSessionStatus

· getSessionLog

· getBulkCmIRPVersion

Notification IRP [3] related operations are also associated with Bulk CM IRP (e.g. Subscribe an Unsubscribe), but these operations are described in 32.302: "Telecommunication Management; Notification Management: Part 2: Notification IRP; Information Service " [3].).

The operations, upload, download, validate, preactivate, activate, fallback and getSessionLog are performed asynchronously in that when the operations are initiated, the IRPAgent returns an indication that the requested activity has begun, and the IRPManager may release and continue with other tasks. If the IRPManager has subscribed on event notifications, then the IRPManager will receive a notification when the task requested in the operation is complete.

The operations startSession, endSession, abortSessionOperation, getSessionIds, getSessionStatus and getBulkCmIRPVersion are performed synchronously in that the result of the operation is returned as a callback to the operation, and the IRPManager will wait until the response is received before continuing. Refer to subclause 4.3 for system conditions that need to be potentially managed, but are outside the scope of this document.

7.1 Class Diagram
7.1.1 Main Operations and Notifications
[image: image5.wmf]BulkCmSession

+ startSession()

+ endSession()

+ abortSessionOperation()

+ getSessionIds()

+ getSessionStatus()

+ getSessionLog()

<< Interface>>

BulkCmPassive

+ upload()

<< Interface>>

BulkCmActive

+ validate()

+ preactivate()

+ download()

+ activate()

+ fallback()

<< Interface>>

BulkCmIRP

<<InfomationObjectClass>>

BulkCmIRPNotifications

+ notifySessionStateChanged()

+ notifyGetSessionLogEnded()

notificationIRPAgent

<<InfomationObjectClass>>

<<emits>>

<<use>>

7.1.2 Suboperations of clause 10
[image: image6.wmf]BulkCMSuboperations

+ bulkCmCreateMo()

+ bulkCmDeleteMo()

+ bulkCmChangeMo()

<< Interface>>

ManagedEntity

<<ProxyClass>>

7.2
Generic rules
- rule 1 : each operation with at least one input parameter supports a pre-condition valid_input_parameter which indicates that all input parameters shall be valid with regards to their information type. Additionally, each such operation supports an exception operation_failed_invalid_input_parameter which is raised when pre-condition valid_input_parameter is false. The exception has the same entry and exit state.
- rule 2 : Each operation with at least one optional input parameter supports a set of pre-conditions supported_optional_input_parameter_xxx where "xxx" is the name of the optional input parameter and the pre-condition indicates that the operation supports the named optional input parameter. Additionally, each such operation supports an exception operation_failed_unsupported_optional_input_parameter_xxx which is raised when (a) the pre-condition supported_optional_input_parameter_xxx is false and (b) the named optional input parameter is carrying information. The exception has the same entry and exit state.
- rule 3 : each operation shall support a generic exception operation_failed_internal_problem which is raised when an internal problem occurs and that the operation cannot be completed. The exception has the same entry and exit state.
7.3
bulkCmSession Interface
7.3.1
Operation startSession (M)

7.3.1.1
Definition
The IRPManager invokes this operation to start a session state machine and initialise temporary entities to be related with bulk data configuration sessionId in the IRPAgent.
7.3.1.2
Input parameters

	Parameter Name
	Qualifier
	Information type
	Comment

	sessionId
	M
	String identifying the session
	Identifies the new session and process to be associated with a bulk data operation e.g. upload or download.

7.3.1.3
Output parameters

	Parameter Name
	Qualifier
	Matching Information
	Comment

	status
	M
	ENUM(OperationSucceded, OperationFailed).
	indicates (a) operation is successful and (b) operation failed because of specified or unspecified reasons

7.3.1.4
Pre-condition
sessionIdNotInUse
	Assertion Name
	Definition

	sessionIdNotInUse
	No state, see clause 9. The supplied sessionId is not already open in the Bulk CM IRP Agent.

7.3.1.5
Post-condition
sessionStarted
	Assertion Name
	Definition

	sessionStarted
	State = IDLE, see clause 9. The Bulk CM IRP Agent has sucessfully opened the session and is ready to handle other operations associated with the session.

7.3.1.6
Exceptions
7.3.1.6.1
operationFailed
	Exception Name
	Definition

	operationFailed
	Condition: Pre-condition is false or post-condition is false.
Returned information: The output prameter status.
Exit state: Entry state.

	
	
	

	
	
	

	
	
	

7.3.2
Operation endSession (M)

7.3.2.1
Definition
The IRPManager invokes this operation to end a session state machine and delete all temporary entities and their related bulk data configuration for a specified sessionId in the IRPAgent. If a preactivation had been invoked, endSession should release any internal local resources allocated for the preactivation. The deletion will be rejected if the configuration state is in a working state: e.g. uploading (including getting a log), downloading or activating.

7.3.2.2
Input parameters

	Parameter Name
	Qualifier
	Information type
	Comment

	sessionId
	M
	String identifying the session
	Identifies this specific session and process associated with an earlier bulk data operation e.g. upload or download

7.3.2.3
Output parameters

	Parameter Name
	Qualifier
	Matching Information
	Comment

	status
	M
	ENUM(OperationSucceded, OperationFailed).
	indicates (a) operation is successful and (b) operation failed because of specified or unspecified reasons

7.3.2.4
Pre-condition
sessionInStableState
	Assertion Name
	Definition

	sessionInStableState
	The supplied sessionId is open in the Bulk CM IRP Agent and in not in a transition status as defined in clause 9, table 1.

7.3.2.5
Post-condition
sessionEnded
	Assertion Name
	Definition

	sessionIdNotInUse
	No state, see clause 9. The session is closed and the sessionId is no longer in use.

7.3.2.6
Exceptions
7.3.2.6.1
operationFailed
	Exception Name
	Definition

	operationFailed
	Condition: Pre-condition is false or post-condition is false.

Returned information: The output prameter status.

Exit state: Entry state.

	
	
	

	
	
	

	
	
	

7.3.3
Operation abortSessionOperation (M)

7.3.3.1
Definition

An IRPManager invokes this operation to request an IRPAgent to abort a currently activate asynchronous operation. The abort will cause the session state machine to exit the current state and enter a new state, see clause 9.
7.3.3.2
Input parameters

	Parameter Name
	Qualifier
	Information type
	Comment

	sessionId
	M
	String identifying the session
	Identifies this specific session and process associated with an earlier bulk data operation e.g. upload or download for which the abort is required.

7.3.3.3
Output parameters

	Parameter Name
	Qualifier
	Matching Information
	Comment

	status
	M
	ENUM(OperationSucceded, OperationFailed).
	indicates (a) start of abort operation is successful and (b) abort operation failed because of specified or unspecified reasons

7.3.3.4
Pre-condition
operationInProgress
	Assertion Name
	Definition

	operationInProgress
	The supplied sessionId is open in the Bulk CM IRP Agent and an operation is in an ‘in progress’ state as defined in clause 9, table 1.

7.3.3.5
Post-condition
operationAborted
	Assertion Name
	Definition

	operationAborted
	State changed from ‘in progress’ to state as a function of the original state as defined in clause 9.

7.3.3.6
Exceptions
7.3.3.6.1
operationFailed
	Exception Name
	Definition

	operationFailed
	Condition: Pre-condition is false or post-condition is false.

Returned information: The output prameter status.

Exit state: Entry state.

7.3.4
Operation getSessionIds (M)

7.3.4.1
Definition
An IRPManager invokes this operation to request an IRPAgent to return a list of all its currently open sessionIds.

7.3.4.2
Input parameters

None.
7.3.4.3
Output parameters

	Parameter Name
	Qualifier
	Matching Information
	Comment

	sessionIdList
	M
	List of strings identifying sessions
	A list of all the sessionIds an IRPAgent currently has open i.e. started with startSession and not ended with endSession operations.

	status
	M
	ENUM(OperationSucceded, OperationFailed).
	indicates (a) operation is successful and (b) operation failed because of specified or unspecified reasons

7.3.4.4
Pre-condition
None
7.3.4.5
Post-condition
None.

	
	
	

	
	
	

	
	
	

7.3.5
Operation getSessionStatus (M)

7.3.5.1
Definition
The IRPManager invokes this operation to request the IRPAgent to send the current state of the bulk configuration data file operation. The IRPAgent returns the current state. See clause 9.

This operation can be invoked in any session state and does not change the session state.

7.3.5.2
Input parameters

	Parameter Name
	Qualifier
	Information type
	Comment

	sessionId
	M
	String identifying the session
	Identifies this specific session and process associated with an earlier bulk data operation e.g. upload or download for which the current status is required.

7.3.5.3
Output parameters

	Parameter Name
	Qualifier
	Matching Information
	Comment

	sessionState
	M
	List of ENUM(Upload In Progress, Upload Failed, Upload Completed, Down Load In Progress, Download Failed, Download Completed, Validation In Progress, Validation Failed, Validation Completed, Preactivation In Progress, Preactivation Failed, Preactivation Partly Realised, Preactivation Completed, Activation In Progress, Activation Failed, Activation Partly Realised, Activation Completed, Fallback In Progress, Fallback Failed, Fallback Partly Realised, Fallback Completed)
	Indicates current state of the configuration data file operation. See clause 9, i.e. will be one of: Upload In Progress, Upload Failed, Upload Completed, Down Load In Progress, Download Failed, Download Completed, Validation In Progress, Validation Failed, Validation Completed, Preactivation In Progress, Preactivation Failed, Preactivation Partly Realised, Preactivation Completed, Activation In Progress, Activation Failed, Activation Partly Realised, Activation Completed, Fallback In Progress, Fallback Failed, Fallback Partly Realised, Fallback Completed.

	status
	M
	
	Indicates (a) start of operation is successful or (b) operation failed because of specified or unspecified reasons

7.3.5.4
Pre-condition
knownSessionID
	Assertion Name
	Definition

	knowSessionID
	Session has been sucessfully started (clause 7.3.1) and not ended (clause 7.3.2).

7.3.5.5
Post-condition
None.
7.3.5.6
Exceptions
7.3.5.6.1
operationFailed
	Exception Name
	Definition

	operationFailed
	Condition: Pre-condition is false.

Returned information: The output prameter status.

Exit state: Entry state.

	
	
	

	
	
	

	
	
	

	
	
	

7.3.6
Operation getSessionLog (M)

7.3.6.1
Definition
An IRPManager invokes this operation to request an IRPAgent to provide a log of the results from activities associated with bulk data configuration file sessionId operations.

This operation can be invoked in any session state and does not change the session state.

7.3.6.2
Input parameters

	Parameter Name
	Qualifier
	Information type
	Comment

	sessionId
	M
	String identifying the session
	Identifies this specific session and process associated with an earlier bulk data operation e.g. upload or download for which the current log is required.

	logFileReference
	M
	String of complete path of file and name.
	Specifies the address and file name where the result is to be placed in the IRPManager.

	contentType
	M
	Boolean
	Identifies if retrieved file should include (a) complete log including errors, (b) only errors.

7.3.6.3
Output parameters

	Parameter Name
	Qualifier
	Matching Information
	Comment

	status
	M
	ENUM(OperationSucceded, OperationFailed).
	Indicates (a) start of operation is successful and (b) operation failed because of specified or unspecified reasons

7.3.6.4
Pre-condition
knownSessionID

	Assertion Name
	Definition

	knowSessionID
	Session has been sucessfully started (clause 7.3.1) and not ended (clause 7.3.2).

7.3.6.5
Post-condition
sessionLogWrite
	Assertion Name
	Definition

	sessionLogWrite
	The Bulk CM IRP Agent will beging to write contents of log to the specified address and file.

7.3.6.6
Exceptions
7.3.6.6.1
operationFailed
	Exception Name
	Definition

	operationFailed
	Condition: Pre-condition is false or post-condition is false.

Returned information: The output prameter status.

Exit state: Entry state.

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

7.4
bulkCmPassive Interface
7.4.1
Operation upload (M)

7.4.1.1
Definition
An IRPManager invokes this operation to request the IRPAgent to create a file containing bulk configuration data (clause 10) and transfer the file to the indicated globally unique data file reference.

7.4.1.2
Input parameters

	Parameter Name
	Qualifier
	Information type
	Comment

	SessionId
	M
	String identifying the session
	Identifies this specific session and process associated with the requested bulk data upload.

	UploadDataFileReference
	M
	String of complete path of file and name.
	This specifies a globally unique file reference to where the specified scope of bulk data is to be uploaded and stored .

	BaseObjectInstance
	M
	DistinguishedName
	The MO where the search starts. This is a full Distinguished Name according to 3GPP TS 32.300 [7].

	Scope
	M
	SEQUENCE <

ENUM {

BASE_OBJECT_ONLY, NTH_LEVEL_SUBORDINATES, BASE_NTH_LEVEL,

BASE_ALL},

Integer>
	This parameter defines how many levels of the containment hierarchy to search (i.e. apply the filter defined below). The search starts from the MO given by the baseObjectInstance parameter. The levels of search that may be performed are:

the base object alone (default);

the n-th level subordinates of the base object;

the base object and all of its subordinates down to and including the n-th level;

the base object and all of its subordinates.

	filter
	M
	See comment.
	This parameter defines a filter test to be applied to the scoped Managed Object(s). If the filter is empty, all of the managed objects included by the scope are selected.

The actual syntax and capabilities of the filter is Solution Set specific. However, each Solution Set support a filter consisting of one or several assertions that may be grouped using the logical operators AND, OR and NOT. Each assertion is a logical expression of attribute existence, attribute value comparison (“equal to X, less than Y” etc.) and MO Class.

7.4.1.3
Output parameters

	Parameter Name
	Qualifier
	Matching Information
	Comment

	status
	M
	ENUM(OperationSucceded, OperationFailed).
	indicates (a) start of operation is successful and (b) operation failed because of specified or unspecified reasons

7.4.1.4
Pre-condition
sessionIdle
	Assertion Name
	Definition

	sessionIdle
	State as defined in clause 9. The Bulk CM IRP Agent has sucessfully opened the session and is ready to handle the first operations of the session or repeat this operation.

7.4.1.5
Post-condition
uploadInProgress
	Assertion Name
	Definition

	Upload in progress
	State = UPLOAD_IN_PROGRESS, as defined in clause 9. The Bulk CM IRP Agent has successfully started the upload of the request configuration data.

7.4.1.6
Exceptions
7.4.1.6. 1
operationFailed
	Exception Name
	Definition

	operationFailed
	Condition: Pre-condition is false or post-condition is false.

Returned information: The output prameter status.

Exit state: Entry state.

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

7.5
bulkCmActive Interface
7.5.1
Operation download (M)

7.5.1.1
Definition
An IRPManager invokes this operation to request an IRPAgent to download and administer a file containing bulk configuration data (clause 10). The IRPAgent obtains the configuration data file from the indicated globally unique data file reference.
For checks made during download see subclause 7.5.6.

7.5.1.2
Input parameters

	Parameter Name
	Qualifier
	Information type
	Comment

	sessionId
	M
	String identifying the session
	Identifies this specific session and process associated with the requested bulk data download.

	downloadDataFileReference
	M
	
	This specifies a globally unique file reference from where the data to be fetched and download from.

7.5.1.3
Output parameters

	Parameter Name
	Qualifier
	Matching Information
	Comment

	status
	M
	ENUM(OperationSucceded, OperationFailed).
	indicates (a) start of operation is successful or (b) operation failed because of specified or unspecified reasons

7.5.1.4
Pre-condition
sessionIdle
	Assertion Name
	Definition

	sessionIdle
	State as defined in clause 9. The Bulk CM IRP Agent has sucessfully opened the session and is ready to handle the first operations of the session or repeat this operation.

7.5.1.5
Post-condition
downLoadInProgress
	Assertion Name
	Definition

	downLoadInProgress
	State = UDOWNLOAD_IN_PROGRESS, as defined in clause 9. The Bulk CM IRP Agent has successfully started the download of the configuration data changes.

7.5.1.6
Exceptions
7.5.1.6.1
operationFailed
	Exception Name
	Definition

	operationFailed
	Condition: Pre-condition is false or post-condition is false.

Returned information: The output prameter status.

Exit state: Entry state.

	
	
	

	
	
	

	
	
	

	
	
	

7.5.2
Operation validate (O)

7.5.2.1
Definition
An IRPManager invokes this operation to request an IRPAgent to validate previously downloaded bulk configuration data (clause.10), see subclause 7.5.1. Use of this optional operation enables an IRPManager to detect errors with regard to the previously downloaded bulk configuration data before requesting preactivation or activation. See subclause 7.5.6 for scope and types of errors attempted to be detected.

Specifying an activation mode is optional. There can only be one activation mode for a session. If an activation mode is specified for the validate, it shall be when the first validate operation is requested. If an activation mode was specified for the first validate operation, it is not possible to change the activation mode initially specified with any subsequent validate retries. (If another activation mode is required; a new session, download, validate, preactivate and activate should be started.). If no activation mode is specified for the first validate, it cannot be subsequently specified with any subsequent validate retries. (If specification of an activation mode is required; a new session, download, validate, preactivate and activate should be started.) If an activation mode is specified for the validate, it cannot be specified for the preactivation or activation. If no activation mode is specified for the validate operation, it can not be specified for the preactivation or activation. See also subclauses 7.5.3 and 7.5.4.
Use of the validate operation shall have no influence on the fallback behaviour of a session.

Invoking the validate operation shall not result in any of the suboperations specified in the downloaded bulk configuration data being applied (clause 10). The operation is essentially passive.
7.5.2.2
Input parameters

	Parameter Name
	Qualifier
	Information type
	Comment

	sessionId
	M
	String identifying the session
	Identifies this specific session and process associated with the requested bulk data download.

	ActivationMode
	O
	
	Identifies whether a specific activation mode is required. See also subclauses 7.5.3 and 7.5.4. The valid choices are defined in the parameter table in clause 7.5.4.

7.5.2.3
Output parameters

	Parameter Name
	Qualifier
	Matching Information
	Comment

	status
	M
	ENUM(OperationSucceded, OperationFailed).
	indicates (a) start of operation is successful or (b) operation failed because of specified or unspecified reasons

7.5.2.4
Pre-condition
downLoaded
	Assertion Name
	Definition

	downLoaded
	State as defined in clause 9. The Bulk CM IRP Agent has sucessfully opened the session and download had been attempted or repeat this operation.

7.5.2.5
Post-condition
validationInProgress
	Assertion Name
	Definition

	validationInProgress
	State = VALIDATE_IN_PROGRESS, as defined in clause 9. The Bulk CM IRP Agent has successfully started the validation of the downloaded configuration data.

7.5.2.6
Exceptions
7.5.2.6.1
operationFailed
	Exception Name
	Definition

	operationFailed
	Condition: Pre-condition is false or post-condition is false.

Returned information: The output prameter status.

Exit state: Entry state.

7.5.3
Operation preactivate (O)

7.5.3.1
Definition

An IRPManager invokes this operation to request an IRPAgent to preactivate previously downloaded bulk configuration data (clause 10) that may have optionally been validated (subclause7.5.3). The principal, but not mandatory, functions of the preactivate operation is to validate the configuration data changes in the context of current operational data and to pre-process the configuration data changes. Use of this optional operation enables the IRPManager to prepare the activation of the downloaded bulk configuration data at the EM or NE level before requesting its effective activation. The actions shall fall short of executing the bulk configuration data changes (clause 10) in the network and impacting service. (The actions may for example be to validate the configuration data changes in the context of current operational data or to pre-process the configuration data changes). Performing such actions prior to activate may help identify any potential problems prior to executing the changes on a live a network and may minimise activation elapse time. See also subclause 7.5.6 for scope of checks during a session and specifically for preactivate.

Specifying an activation mode is optional. There can only be one activation mode for a session. If an activation mode is specified for the preactivation, it shall be when the first preactivate or validate operation is requested. If an activation mode was specified by validate it is not possible to change the activation mode initially specified with any subsequent preactivate or activate operations. If an activation mode was specified for the first preactivate operation, it is not possible to change the activation mode initially specified with any subsequent preactivate retries, activate or activate retries. (If another activation mode is required, a new session, download, validate, preactivate and activate should be started.) If no activation mode is specified for the first preactivate, it cannot be subsequently specified with any subsequent preactivate retries, activation or activation retries. (If specification of an activation mode is required, a new session, download, validate, preactivate and activate should be started.) See also subclauses 7.5.2 and 7.5.4.

See subclause 6.2.4.3 for description of optional verification mode parameter and associated checking.

Selecting a fallback option is optional. There can only be one fallback option for a session.

If the option is selected it shall be initiated when the first preactivation operation is requested. If a fallback option is not requested for the first preactivation, it cannot be subsequently requested for repeated preactivations or activations during the session. If the fallback option was requested, it is not possible to change the fallback option initially selected with any subsequent re- preactivate retries i.e. for a session it is only possible to fallback to the configuration that existed when the first preactivate operation was requested. See also clause 7.5.5. (If a new fallback configuration is required a new session, download, activate and preactivate should be started. The old session can be ended, prior to which fallback can optionally be invoked).

Specifying how preactivate operation retries within a session shall be implemented following a partially successful preactivation (e.g. repeat all preactivation management actions or just the uncompleted delta of management actions that did not previously complete successfully) is beyond the scope of this document. Only the IRPManager can initiate preactivate retries. (The IRPAgent shall not initiate retries autonomously).

7.5.3.2
Input parameters

	Parameter Name
	Qualifier
	Information type
	Comment

	sessionId
	M
	String identifying the session
	Identifies this specific session and process associated with an earlier bulk data download that is required to be activated.

	VerificationMode
	O
	
	Selects the mode of checking. One of two choices may be selected: “full checking”, “limited checking”, see subclause 7.5.6.3.

	activationMode
	O
	
	Identifies whether a specific activation mode is required. See also subclauses 7.5.2 and 7.5.4. The valid choices are defined in the parameter table in clause 7.5.4.

	fallbackEnabled
	M
	
	Indicates whether or not it is required to initialise and enable fallback option prior to the preactivation.

This option is only open for the first preactivate operation of a session. For any subsequent preactivate operation retries within a session the fallbackEnabled parameter must be set to indicate it is not required to initialise fallback otherwise the pre-activate operation retry shall fail.

7.5.3.3
Output parameters

	Parameter Name
	Qualifier
	Matching Information
	Comment

	status
	M
	ENUM(OperationSucceded, OperationFailed).
	indicates (a) start of operation is successful or (b) operation failed because of specified or unspecified reasons

7.5.3.4
Pre-condition
	Assertion Name
	Definition

	downLoaded
	State as defined in clause 9. The Bulk CM IRP Agent has sucessfully opened the session and download had been attempted or repeat this operation.

7.5.2.5
Post-condition
preactivationInProgress
	Assertion Name
	Definition

	preactivationInProgress
	State = PREACTIVATION_IN_PROGRESS, as defined in clause 9. The Bulk CM IRP Agent has successfully started the validation of the downloaded configuration data.

7.5.3.6
Exceptions
7.5.3.6.1 operationFailed
	Exception Name
	Definition

	operationFailed
	Condition: Pre-condition is false or post-condition is false.

Returned information: The output prameter status.

Exit state: Entry state.

7.5.4
Operation activate (M)

7.5.4.1
Definition
An IRPManager invokes this operation to request an IRPAgent to activate previously downloaded bulk configuration data (clause 10) that may have optionally been checked (subclause 7.5.2) and/or been preactivated (subclause 7.5.3). Activate means that operations specified in a previously downloaded configuration data file, for example create, delete and modify of managed objects are carried out on the live network i.e. mobile subscribers are affected by the downloaded configuration data.
An IRPAgent may support an optional activationMode parameter. This enables the IRPManager to indicate to the IRPAgent the preference for how the activation shall be executed. One of two options may be selected: “least service impact” or “least elapse time”. If the “least service impact” option is selected the IRPAgent shall optimise the execution of the activation in a way that minimises disruption to network services. Elapse time to complete the activation is of secondary importance. If the “least elapse time” option is selected the IRPAgent shall optimise the execution of the activation in a way that minimises the elapse time for completing the execution of the activation. During the execution, disruption of network services is of secondary importance.
See subclause 7.5.6 for descriptions of checks made during activate execution.

Specifying an activation mode is optional. There can only be one activation mode for a session. If an activation mode is specified for the activation, it shall be when the first activate, validate or preactivate operation is requested. If an activation mode was specified by validate or preactivate operations, it is not possible to change the activation mode initially specified with any subsequent activate operations. If an activation mode was specified for the first activate, it is not possible to change the activation mode initially specified with any subsequent activate retries. (If another activation mode is required, a new session, download, validate, preactivate and activate should be started.) If no activation mode is specified for the first activate, it cannot be subsequently specified with any subsequent activate retries. (If specification of an activation mode is required, a new session, download, validate, preactivate and activate should be started.) See also subclauses 7.5.2 and 7.5.3.
If a preactivation had been invoked, successful completion of activate should release any internal local resources allocated for the preactivation.
Selecting a fallback option is optional. There can only be one fallback option for a session.

If the fallback option is selected it shall be initiated when the first activation or preactivation operation is requested. If a fallback option is not requested for the first activation or preactivation, it cannot be subsequently requested for repeated activations or an activation following a preactivation during the session. If the fallback option was requested, it is not possible change the fallback option initially selected with any subsequent re-activate retries or an activation following a peractivation i.e. for a session it is only possible to fallback to the configuration that existed when the first activate or preactivate operation was requested. See also subclause 7.5.5. (If a new fallback configuration is required a new session, download and activate should be started. The old session can be ended, prior to which fallback can optionally be invoked).
Specifying how activate operation retries within a session shall be implemented following a partially successful activation (e.g. repeat all activation management actions or just the uncompleted delta of management actions that did not previously complete successfully) is beyond the scope of this document. Only the IRPManager can initiate activate retries. (The IRPAgent shall not initiate retries autonomously).

7.5.4.2
Input parameters

	Parameter Name
	Qualifier
	Information type
	Comment

	sessionId
	M
	String identifying the session
	Identifies this specific session and process associated with an earlier bulk data download that is required to be activated.

	activationMode
	O
	
	Identifies whether a specific activation mode is required. See also subclauses 7.5.2 and 7.5.3. It may be set to indicate “least service impact” or “least elapse time” types of activation are required.

	fallbackEnabled
	M
	
	Indicates whether or not it is required to initialise and enable fallback option prior to the activation.

This option is only open for the first activate operation of a session. For any subsequent activate operation retries within a session the fallbackEnabled parameter must be set to indicate it is not required to initialise fallback otherwise the activate operation retry shall fail.

7.5.4.3
Output parameters

	Parameter Name
	Qualifier
	Matching Information
	Comment

	status
	M
	ENUM(OperationSucceded, OperationFailed).
	indicates (a) start of operation is successful or (b) operation failed because of specified or unspecified reasons

7.5.4.4
Pre-condition
downLoaded
	Assertion Name
	Definition

	downLoaded
	State as defined in clause 9. The Bulk CM IRP Agent has sucessfully opened the session and download had been attempted or repeat this operation.

7.5.4.5
Post-condition
activationInProgress
	Assertion Name
	Definition

	activationInProgress
	State = ACTIVATE_IN_PROGRESS, as defined in clause 9. The Bulk CM IRP Agent has successfully started the activation of the downloaded configuration data.

7.5.4.6
Exceptions
7.5.4.6.1 operationFailed
	Exception Name
	Definition

	operationFailed
	Condition: Pre-condition is false or post-condition is false.

Returned information: The output prameter status.

Exit state: Entry state.

	
	
	

	
	
	

	
	
	

	
	
	

7.5.5
Operation fallback (M)

7.5.5.1
Definition
An IRPManager invokes this operation to request an IRPAgent to recover after a previously ordered activation or preactivation has failed.
If a fallback is requested after a preactivation but before an activation the IRPAgent should as necessary return any internal local resources impacted by the preactivation back to the same state they were in prior to the preactivation being invoked. There is no impact to the operational network resources as the activate operation has not been invoked.

If fallback is requested after an activation the IRPAgent shall instigate activating the fallback area to restore the operational network resources impacted by the configuration changes for the session back to the configuration they were in when the fallback option was selected during the session. If a preactivation was also performed, as necessary the IRPAgent should return any internal local resources impacted by the preactivation back to the same state they were in prior to the preactivation being invoked.
Specifying how fallback operation retries within a session shall be implemented after a fallback fails (e.g. repeat all fallback functions or just the delta of fallback functions that did not previously complete successfully) is beyond the scope of this document. Only the IRPManager can initiate the fallback operation. The IRPAgent shall not initiate fallback or fallback retries autonomously. Within a session the fallback operation shall only be accepted if an initial activate or preactivate operations was performed with fallback option enabled. For further discussion of enabling or not the fallback option see subclause 7.5.4.

7.5.5.2
Input parameters

	Parameter Name
	Qualifier
	Information type
	Comment

	SessionId
	M
	String identifying the session
	Identifies this specific session and process associated with an earlier bulk data operation e.g. upload or download for which the current log is required.

7.5.5.3
Output parameters

	Parameter Name
	Qualifier
	Matching Information
	Comment

	Status
	M
	ENUM(OperationSucceded, OperationFailed).
	indicates (a) start of operation is successful or (b) operation failed because of specified or unspecified reasons

7.5.5.4
Pre-condition
fallbackEnabled
	Assertion Name
	Definition

	fallbackEnabled
	State as defined in clause 9. The Bulk CM IRP Agent has sucessfully opened the session and fallbackEnables=True by either, preactivate or activate operations being successfully invoked, as defined in subclauses 7.5.3 and 7.5.4.

7.5.5.5
Post-condition
fallbackInProgress
	Assertion Name
	Definition

	fallbackInProgress
	State = FALLBACK_IN_PROGRESS, as defined in clause 9. The Bulk CM IRP Agent has successfully started the fallback.

7.5.5.6
Exceptions
7.5.5.6.1 operationFailed
	Exception Name
	Definition

	operationFailed
	Condition: Pre-condition is false or post-condition is false.

Returned information: The output prameter status.

Exit state: Entry state.

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

7.5.6 Validation and Checking Functions

7.5.6.1
Download Checks

During download the IRPAgent should check the consistency of imported configuration data against the data schema to ensure there are no errors. The IRPAgent is not required to check the semantic of the downloaded bulk configuration data during the download.

7.5.6.2
Validate Checks

During validation the IRPAgent should check the syntax and semantic of previously downloaded bulk configuration data.

7.5.6.3
Preactivation Checks

During preactivation the IRPAgent should check the semantic of previously downloaded bulk configuration data, and must also check the syntax if a validate operation has not previously been successfully performed.

An Element Manager should, if technically feasible, send the configuration data changes to all Network Elements (NE) for the NE to verify, to the extent possible, that the activate will successfully execute the configuration data changes. If any elements of configuration change data that will not successfully execute are identified, diagnostic data identifying the NEs and failing configuration data elements will be made available to the Manager.

An IRPAgent may support an optional verification mode parameter, see clause 7.5.2. When the IRPManager does not require extensive checking, this parameter may be used to constrain the scope of validation to avoid performing checks that potentially may require extensive real time to execute, for example checks actively involving entities outside the IRPAgent such as NE's. The validation mode parameter has two values: "full checking" and "limited checking". In the “full checking” mode, the checking should be as complete as possible with the intent of achieving the greatest assurance that the subsequent activation operation will be successful. In the "limited checking" mode, checking that can be performed by the IRPAgent rapidly is still performed, but further checking that may cause significant delays to execute should be omitted.

7.5.6.4
Activate Checks

During the activation the same checks as for validate and preactivate should be performed if these operations have not previously been successfully performed. These checks may also be repeated if the context may have changed.

8.1

Interface BulkCmIRPNotifications#1

·
·

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

8.1.1
Notification notifySessionStateChanged (M)

8.1.1.1
Definition
The IRPAgent notifies the IRPManager that a state change has occurred on a bulk -configuration data file sessionId operation subscribed to by the IRPManager. E.g. a configuration data file is available for processing after an upload, a download is complete. See clause 9 for a further description of states.
	Parameter Name
	Qualifiers
	Matching Information
	Comment

	objectClass
	O,F
	ManagedEntity.objectClass
	Notification header - see [3].

	objectInstance
	O,F
	ManagedEntity.objectInstance.
	Notification header - see [3].

	notificationId
	O
	This carries the semantics of notification identifier.
	Notification header - see [3].

	eventTime
	M,F
	ManagedEntity.creationTime
	Notification header - see [3].

	systemDN
	O,C,F
	IRPAgent.systemDN where the IRPAgent is related to the KernelCmIRP.
	Notification header - see [3].

	NotificationType
	M,F
	Mapped to notificationType in [3].
	Notification header - see [3]. For this notification it indicates notification type is Notify Session State Changed.

	sessionId
	M
	String identifying the session
	Identifies this specific session and process associated with an earlier bulk data operation e.g. upload or download for which the current status is required.

	sourceIndicator
	O
	
	This parameter, when present, indicates the source of the operation that led to the generation of this notification. It can have one of the following values:

· resource operation: The notification was generated in response to an internal operation of the resource;

· management operation: The notification was generated in response to a management operation applied across the managed object boundary external to the managed object;

· unknown: It is not possible to determine the source of the operation.

	sessionState
	M
	ENUM(Upload Failed, Upload Completed, Download Failed, Download Completed, Validation Failed, Validation Completed, Preactivation Failed, Preactivation Partly Realised, Preactivation Completed, Activation Failed, Activation Partly Realised, Activation Completed, Fallback Failed, Fallback Partly Realised, Fallback Completed)
	Indicates the state transition that caused the Notification. See clause 9. i.e. Upload Failed, Upload Completed, Download Failed, Download Completed, Validation Failed, Validation Completed, Preactivation Failed, Preactivation Partly Realised, Preactivation Completed, Activation Failed, Activation Partly Realised, Activation Completed, Fallback Failed, Fallback Partly Realised, Fallback Completed. (Note: as per sub-clause 9.2 “in-progress” transition states are not notified)

8.1.1.3
Triggering events
State transitions as defined in clause 9.

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	
·
·
·

	
	
	

8.1.1
Notification NotifyGetSessionLogEnded (M)

8.1.1.1
Definition
The IRPAgent notifies the IRPManager that a requested GetSessionLog for a bulk data configuration file sessionId operation subscribed to by the IRPManager has ended successfully or unsuccessfully.
8.1.1.2
Input parameters

	Parameter Name
	Qualifiers
	Matching Information
	Comment

	objectClass
	O,F
	ManagedEntity.objectClass
	Notification header - see [3].

	objectInstance
	O,F
	ManagedEntity.objectInstance.
	Notification header - see [3].

	notificationId
	O
	This carries the semantics of notification identifier.
	Notification header - see [3].

	eventTime
	M,F
	ManagedEntity.creationTime
	Notification header - see [3].

	systemDN
	O,C,F
	IRPAgent.systemDN where the IRPAgent is related to the KernelCmIRP.
	Notification header - see [3].

	NotificationType of notificationHeader
	M,F
	Mapped to notificationType in [3]
	Notification header - see [3].For this notification it indicates notification type is Notify Bulk CM Log State.

	SessionId
	M
	String identifying the session
	Identifies this specific session and process associated with an earlier bulk data operation e.g. upload or download for which Log State is required.

	SourceIndicator
	O
	
	This parameter, when present, indicates the source of the operation that led to the generation of this notification. It can have one of the following values:

· resource operation: The notification was generated in response to an internal operation of the resource;

· management operation: The notification was generated in response to a management operation applied across the managed object boundary external to the managed object;

· unknown: It is not possible to determine the source of the operation.

	SessionLogStatus
	M
	Boolean = GetSessionLog completed successfully or GetSessionLog completed unsucessfully
	Indicates event that caused the Notification i.e. GetSessionLog completed successfully, GetSessionLog completed unsucessfully.

8.1.1.3
Triggering event

Attempt to transfer session log to destinations completed successfully or failed. Session state independent, see clause 9.

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	
·
·
·

	
	
	

9
State Machine

9.1
State Machine Overview

The Bulk CM IRPAgent state machine satisfies the following general requirements and characteristics for Bulk CM IRP:

1) Each configuration session is associated with one state machine. The session is identified by the sessionId. If a session is a started (startSession operation) an instance of the state machine is created. If the session is ended (endSession operation) the instance of the state machine is deleted.

2) Under normal operation without errors the IRPManager is able to supervise a configuration session by just monitoring the state change notifications (notifySessionStateChanged) triggered by the IRPAgent

3) Under abnormal conditions where the IRPManager is not notified of a change, the getSessionStatus operation can be invoked to determine current state of the session. The IRPManager does not need to maintain a history of the state machine.

4) On the IRPAgent there is only one download configuration data file (clause 10) associated with a session at a time.

5) Multi configuration session must be supported by the IRPAgent. E.g. it must be possible to invoke an upload session in parallel with an active activate session.

6) The IRPAgent resolves concurrency problems on a "first come - first serve" basis. E.g. an upload and an activation requested on the same configuration data can not be performed at the same time and in this case the first will be progress to completions and the second request rejected.

7) It must be possible to abort a configuration session within a transition state.

8) The operator/IRPManager decides on whether or not enabling the fallback option is required before requesting an activation or preactivation Enabling the fallback option will maintain the disposition of the configuration before the activation or preactivation . The fallback configuration information is established at point before the first activation or preactivation is started. If there are multiple activation or preactivation attempts during a session only one (first) fallback configuration is maintained.

9) The session log file can be requested in any state. The uploaded log file contains information which is specific to the configuration session.

10) Clause 7.3 defines the valid state machine pre and post conditions for each operation.

9.2
State Machine Description

The IRPAgent progresses Bulk CM operations and associated configuration data changes (clause 10) within a session according to the state machine defined here. The IRPManager can manage a configuration session using session state change notifications which are triggered by the IRPAgent. Not all state changes defined here are notified to the IRPManager. The transition states (UPLOAD_IN_PROGRESS, DOWNLOAD_IN_PROGRESS, VALIDATION_IN_PROGRESS, PREACTIVATION_IN_PROGRESS, ACTIVATION_IN_PROGRESS) are not notified to the IRPManager as they are not required.

If the IRPManager becomes unaware or needs to confirm the current state of a configuration session it can request this by invoking getSessionStatus operation. It is not required to know the history of the state machine. The getSessionStatus operation will provide the "actual " current status.
An IRPManager may request the status when it detects loss of control, for example because of the following reasons:

1) Session state change notifications are not being received as expected, e.g. because IRPAgent is blocked in a transition state, e.g. ACTIVATION_IN_PROGRESS;
2) IRPManager gets disconnected from the IRPAgent, e.g. session state notification are not received.

The session state notification events are a considered a subset of the state machine (without transition state). The actual configuration state can be requested via getSessionStatus. Because of this common behaviour it is reasonable to define one interface type for the state machine handling which is used in the session state notification and in the getSessionStatus operation.
The IRPManager will only receive notifications if it registered itself at the IRPAgent with the subscribe operation.

For ease of description the state machine of a configuration session is introduced with the notion of substate machines but state itself are named unique. This kind of notion is not to be interpreted as providing implementation directions.

Within the description of the substate machines it is becoming clear that they have the following state symmetries:
The state of the UPLOAD_PHASE, the DOWNLOAD_PHASE and the VALIDATION_PHASE are similar.
The state of the ACTIVATION_PHASE, PREACTIVATION_PHASE and the FALLBACK_PHASE are similar.
The startSession operation creates a state machine. The initial state of the configuration session in the IDLE_PHASE is IDLE. The endSession deletes a state machine which is not in a transition state, more details are defined in the substate machines.

[image: image7.wmf]validate

download

upload

startSession

endSession

substate machine of

DOWNLOAD_PHASE

substate machine of

UPLOAD_PHASE

substate machine of

VALIDATION_PHASE

substate machine of

FALLBACK_PHASE

IDLE

IDLE_PHASE

activate

substate machine of

ACTIVATION_PHASE

fallback

activate

substate machine of

PREACTIVATION_PHASE

preactivate

fallback

Figure 5: State Machine

The following figures describe the substate machine of a configuration session. The transition states, DOWNLOAD_IN_PROGRESS, UPLOAD_IN_PROGRESS VALIDATION_IN_PROGRESS, PREACTIVATION_IN_PROGRESS and ACTIVATION_IN_PROGRESS, are either left implicit if the IRPAgent finished the processing or explicit via an abortSessionOperation operation from the IRPManager.

In these figures solid transition lines indicate the transition is caused by an external event and dashed transition lines indicate the transition is caused by an internal event or decision as depicted in figure 6.

[image: image9.wmf]external event

STATE2

STATE1

STATE2

STATE1

internal event/decision

Figure 6: Depicting State Transition Lines for Internal and External Events and Decision

9.2.1
Upload Phase

When the upload is triggered the IRP Agent writes the requested configuration data into a configuration data file and copies to the file reference provided by the IRP Manager. If the process succeeds the state UPLOAD_COMPLETED is indicated. If the upload fails a retry can be triggered in state UPLOAD_FAILED.
Once a session is associated with an upload none of the other state changes phases outside of the upload phase, i.e., download, validate, preactivate and activate phases cannot be triggered for the session.

[image: image10.wmf]upload

endSession

abortSessionOperation

UPLOAD_

IN_PROGRESS

upload

UPLOAD_FAILED

UPLOAD_

COMPLETED

UPLOAD_PHASE

Internal: upload

failed

Internal: upload

successful

Figure 7: Substate Machine – UPLOAD_PHASE
9.2.2
Download Phase

When the download is triggered the IRP Agent copies the configuration data file (clause 10) from a given file area. The file is parsed and validated. If valid the state DOWNLOAD_COMPLETED is indicated. If the download fails a retry can be triggered in state DOWNLOAD_FAILED.
Once a session is associated with a download/validate/preactivate/activation behaviour then an upload phase cannot be triggered within this session.

[image: image12.wmf]download

endSession

abortSessionOperation

DOWNLOAD_

IN_PROGRESS

download

DOWNLOAD_

FAILED

DOWNLOAD_

COMPLETED

DOWNLOAD_PHASE

precheck, preactivate,

activate

Internal: Download

successful

Internal: Download

failed

Figure 8: Substate Machine – DOWNLOAD_PHASE
9.2.4
Validation Phase

After a download had been completed the configuration data can be semantically validated before being preactivated or activated into the real subnetwork of an IRPAgent. (see subclause 7.5.6.2). A best effort strategy shall be applied. If validation was successfull the state VALIDATION_COMPLETED is indicated. If the validate fails a retry can be triggered in state VALIDATION_FAILED.

[image: image13.wmf]validate

endSession

abortSessionOperation

VALIDATION_

IN_PROGRESS

validate

VALIDATION_

FAILED

VALIDATION_

COMPLETED

VALIDATION_PHASE

activate or

preactivate

Internal: Check

successful

Internal: validate

failed

Figure 11: Substate Machine – VALIDATION_PHASE

9.2.5
Preactivation Phase

After a download had been completed and optionally validated the configuration data can be preactivated before being activated into the real subnetwork of an IRPAgent. If the process fully succeeds the preactivation is completed.

For preactivation a best effort strategy shall be employed.

If the IRPAgent is unable to successfully complete all pre-MIB changes that were actioned in the configuration data file (clause10) the state PREACTIVATION_PARTLY_REALISED is indicated. This state is not an error condition because the preactivation of configuration data changes follows a best effort strategy. If the preactivation fails completely i.e. there are no pre-MIB changes the state PREACTIVATION_FAILED is indicated. A retry of the preactivate can be performed in states PREACTIVATION_PARTLY_REALISED and PREACTIVATION_FAILED. The PREACTIVATION_FAILED state cannot be entered if previously during the session the state had become PREACTIVATION_PARTLY_REALISED. The PREACTIVATION_PARTLY_REALISED state should be re-entered instead. A retry of the preactivate is allowed so that it is possible to recover after transient condition that caused an preactivate to fail or partly realise are no longer present.

[image: image14.wmf]preactivate

endSession

abortSessionOperation

PREACTIVATION_

IN_PROGRESS

preactivate

PRE-ACTIVATION_

PARTLY_REALISED

PREACTIVATION_

FAILED

PRE-ACTIVATION_

COMPLETED

PRE-ACTIVATION_PHASE

fallback

Only valid if not

previously entered

PREACTIVATION_PAR

TLY_REALISED state

Internal:

Preactivation failed

Internal:

Prectivation

successful

Internal:

Preactivation failed

activate

Figure 12: Substate Machine – PREACTIVATION_PHASE

9.2.6
Activation Phase

After a download has been completed and optionally validated and/or preactivated the configuration data can be activated into the real subnetwork of an IRPAgent. If the process fully succeeds the activation is completed.
For activation a best effort strategy shall be employed.

If the IRPAgent is unable to successfully complete all MIB changes and corresponding changes in the network elements that were actioned in the configuration data file (clause 10) the state ACTIVATION_PARTLY_REALISED is indicated. This state is not an error condition because the activation of configuration data changes follows a best effort strategy. If the activate fails completely i.e. there are no MIB changes or corresponding changes in the network elements, the state ACTIVATION_FAILED is indicated. A retry of the activate can be performed in states ACTIVATION_PARTLY_REALISED and ACTIVATION_FAILED. The ACTIVATION_FAILED state cannot be entered if previously during the session the state had become ACTIVATION_PARTLY_REALISED. The ACTIVATION_PARTLY_REALISED state should be re-entered instead. A retry of the activate is allowed so that it is possible to recover after transient condition that caused an activate to fail or partly realise are no longer present.

[image: image16.wmf]activate

endSession

abortSessionOperation

ACTIVATION_

IN_PROGRESS

activate

ACTIVATION_

PARTLY_REALISED

ACTIVATION_

FAILED

ACTIVATION_

COMPLETED

ACTIVATION_PHASE

fallback

Only valid if not

previously entered

ACTIVATION_PARTLY_

REALISED state

Internal: Activation

failed

Internal: Activation

successful

Internal: Activation

failed

Figure 9: Substate Machine – ACTIVATION_PHASE

9.2.7
Fallback Phase

If an activate or preactivate operation was requested with the fallback option enabled and was successfully or partially completed then a fallback operation can be requested. If the process of a fallback fully succeeds then the related MIB and subnetwork is reverted back to its former configuration prior to first configuration data file preactivation or activation of a session.

For fallback a best effort strategy shall be employed.

In case that not all MIB changes and corresponding changes in the network elements that were actioned in configuration data file (clause 8) were successfully reverted back the state FALLBACK_PARTLY_REALISED is indicated. This state is not an error condition as the fallback to the former configuration follows a best effort strategy. If the fallback fails completely i.e. no MIB changes or corresponding changes in the network elements can be reverted back then the state FALLBACK_FAILED is indicated. A retry of fallback can be performed in the states FALLBACK_PARTLY_REALISED and FALLBACK_FAILED. The FALLBACK_FAILED state cannot be entered if previously during the session the state had become FALLBACK_PARTLY_REALISED. The FALLBACK_PARTLY_REALISED state should be re-entered instead. A retry of the fallback is allowed so that it is possible to recover after transient condition that caused a fallback to fail or partly realise are no longer present.

[image: image18.wmf]fallback

endSession

abortSessionOperation

FALLBACK_

IN_PROGRESS

fallback

FALLBACK_

PARTLY_REALISED

FALLBACK_

FAILED

FALLBACK_

COMPLETED

FALLBACK_PHASE

Internal: Fallback

failed

Internal: Fallback

successful

Only valid if not previously entered

FALLBACK_PARTLY_REALISED

state

Internal: Fallback

failed

Figure 10: Substate Machine – FALLBACK_PHASE

9.3
State Machine Pre and Post Conditions Tables

For each operation Table 15 identifies the state machine pre and post conditions.

Table 1: State Machine Pre and Post Conditions

	Operation
	Pre-condition
	Post Condition

	startSession
	No state – input sessionId provided by an IRPManager is not already in use in the IRPAgent by this or any other IRPManager
	State = IDLE

	endSession
	not in a Transition status i.e. state <>. *_IN_PROGRESS
	sessionId is released - No state.

	upload
	State = IDLE or UPLOAD_FAILED
	Initially while operation is being performed:

State= UPLOAD_IN_PROGRESS

Finally when operation has completed:

State = UPLOAD_COMPLETED or UPLOAD_FAILED

	download
	State = IDLE or DOWNLOAD_FAILED
	Initially while operation is being performed:

State= DOWNLOAD_IN_PROGRESS

Finally when operation has completed:

State = DOWNLOAD_COMPLETED or DOWNLOAD_FAILED

	validate
	State = DOWNLOAD_COMPLETED or VALIDATION_FAILED
	Initially while operation is being performed:

State= VALIDATION_IN_PROGRESS

Finally when operation has completed:

State = VALIDATION_COMPLETED or VALIDATION_FAILED

	preactivate
	State = DOWNLOAD_COMPLETED or VALIDATION_COMPLETED or PREACTIVATION_PARTLY_REALISED or PREACTIVATION_FAILED
	Initially while operation is being performed:

State= PREACTIVATION_IN_PROGRESS

Finally when operation has completed:

State = PREACTIVATION_COMPLETED or PREACTIVATION_PARTLY_REALISED or PREACTIVATION_FAILED

	activate
	State = DOWNLOAD_COMPLETED or VALIDATION_COMPLETED or ACTIVATION_PARTLY_REALISED or ACTIVATION_FAILED or PREACTIVATION_COMPLETED or PREACTIVATION_PARTLY_REALISED or PREACTIVATION_FAILED
	Initially while operation is being performed:

State= ACTIVATION_IN_PROGRESS

Finally when operation has completed:

State = ACTIVATION_COMPLETED or ACTIVATION_PARTLY_REALISED or ACTIVATION_FAILED

	fallback
	State = PREACTIVATION_COMPLETED or PREACTIVATION_PARTLY_REALISED or ACTIVATION_COMPLETED or ACTIVATION_PARTLY_REALISED or FALLBACK_PARTLY_REALISED or FALLBACK_FAILED or FALLBACK_PARTLY_REALISED or FALLBACK_FAILED
	Initially while operation is being performed:

State= FALLBACK_IN_PROGRESS

Finally when operation has completed:

State = FALLBACK_COMPLETED or FALLBACK_PARTLY_REALISED or FALLBACK_FAILED

	abortSessionOperation
	State = UPLOAD_IN_PROGRESS or DOWNLOAD_IN_PROGRESS or VALIDATION_IN_PROGRESS or
PREACTIVATION_IN_PROGRESS or ACTIVATION_IN_PROGRESS or FALLBACK_IN_PROGRESS
	State =

UPLOAD_FAILED or DOWNLOAD_FAILED or VALIDATE_FAILED or PREACTIVATION_PARTLY_REALISED or PREACTIVATION_FAILED or ACTIVATION_PARTLY_REALISED or ACTIVATION_FAILED or FALLBACK_PARTLY_REALISED or FALLBACK_FAILED

	getSessionIds
	N/A – State Machine independent
	N/A

	getSessionStatus
	None
	None

	getSessionLog
	None
	None

	getBulkCmIRPversion
	N/A – State Machine independent
	N/A

10
Bulk Configuration Data File

The overall management of Bulk CM is controlled by the operations in subclause 7. Unitary management information is aggregated into a configuration data file for bulk CM operations. The file can be used for active and passive CM.

Bulk configuration data files consist of one or more blocks. Each block contains one or more object containment trees defined by a standardised language, for example XML. The basic building block (node) of this tree is a specifically-typed MO. This MO is identified by an ID attribute (the Naming attribute used in the RDN), and contains (1) data associated with the MO, and (2) zero or more children nodes. The structure and content of the MO data is constrained by the possible types of contained objects for the CM NRM that is being managed by Bulk CM IRP IS.

The file structure is the same for both upload and download bulk CM operations, apart that for active bulk CM operations, as well as containing MO data the blocks also specify the management actions (sub-operations) associated with each MOs item in the file. The following management actions (sub-operations) on MOs are supported for active bulk CM:

· Create MO. (sub-clause 10.1.1)

· Delete MO. (sub-clause 10.1.2)

· Change one or more existing MO attribute values. (sub-clause 10.1.3)

The rules for ordering management actions in the configuration data file are defined in sub-clause 10.2.

10.1
Bulk Configuration Data Management Actions – Sub-operations

By the nature of active Bulk CM IRP, in the download bulk configuration file all sub-operation parameters identified in the following sub-clauses 10.1.1 – 10.1.3 are "input " only. Bulk CM IRP:IS will not generate any explicit notifications or responses for each sub-operation. The resulting session log and output(s) from the associated Bulk CM operations will record and convey the overall result of the sub-operations in the bulk configuration data file. The IRPAgent can record the outcome of relevant sub-operations in the session log. The IRPManager can subsequently get the session log (sub-clause 7.3.6) if it is required to make a detailed analysis.

It should be noted other IRPs can generate notifications as a result of Bulk CM: IS sub-operations if an IRPAgent implements Basic CM IRP. The rules and definitions for these notifications are beyond the scope of this document. The NRMs identified in sub-clause 6.4 and references [4], [5] and [6] give further details of which MOCs may generate Basic CM IRP notifications as a consequence of the sub-operations defined here.

10.1.1

bulkCmCreateMo (Create MO Sub-operation) (M)
The IRPManager associates this sub-operation with an MOI in the configuration data file to request the IRPAgent to create the MOI.
bulkCmCreateMo parameters

	Name
	Qualifier
	Description

	objectClass
	Input, M
	Identifies the NRM MOC within the scope of sub-clause 6.4 that is to be created.

	objectInstance
	Input, M
	Identifies the NRM MOC instance that is to be created.

	attributeList
	Input, O
	Empty, or one or more attribute name and value pairs valid for the MOC. See sub-clause 6.4. If the list is not empty the indicated attributes will be set to their indicated values when the object is created.

10.1.2

bulkCmDeleteMo (Delete MO Sub-operation) (M)
The IRPManager associates this sub-operation with an MOI in the configuration data file to request the IRPAgent to delete the MOI.
bulkCmDeleteMo parameters

	Name
	Qualifier
	Description

	objectClass
	Input, M
	Identifies the NRM MOC within the scope of sub-clause 6.3 that is to be deleted.

	objectInstance
	Input, M
	Identifies the NRM MOC instance that is to be deleted.

10.1.3

bulkCmChangeMo (Change MO Sub-operation) (M)
The IRPManager associates this sub-operation with an MOI in the configuration data file to request the IRPAgent to change/set one or more attributes of the MOI.
bulkCmChangeMo parameters

	Name
	Qualifier
	Description

	objectClass
	Input, M
	Identifies the NRM MOC within the scope of sub-clause 6.4 that the attributes are to be changed.

	objectInstance
	Input, M
	Identifies the NRM MOC instance for which the attributes are to be changed.

	attributeList
	Input, M
	One or more attribute name and value pairs valid for the MOC. See sub-clause 6.3. The indicated attributes of the MOC instance will be changed/set to their indicated values.

10.2
Rules for ordering Management Actions (Sub-operations) in Configuration Data Files

10.2.1
Download files

1. The IRP Manager shall enter the management actions into the configuration data file in the order they are to be interpreted and actioned by the IRPAgent following its sequentially step-by-step single pass operation. The IRPManager has overall responsibility for ensuring the correct order of action is given according to the rules in this sub-clause.

2. The IRPAgent shall interpret the management actions in the configuration data file sequentially step-by-step in a single pass operation. The IRPManager has overall responsibility for ensuring the correct order of action is given.

3. The permitted order shall follow NRM hierarchy subtree(s) of the Managed Object instances pertaining to the configuration data file.

4. All delete MOs actions shall precede any Create MOs actions.

5. This document does not specify any limitations on the ordering of change MO attribute actions other than the impacted if the impacted MO does not already exist it needs to be created by a prior create action. The choice of standardised language may recommend or specify some additional constraints e.g. for reasons of efficiency or for compliance with language syntax. Such recommendation and constraints are beyond the scope of this document
6. All necessary MO changes supported by Bulk CM IRP interface-N need to be fully specified in a configuration data file to maintain consistency within the NRM MIB subtree being operated on. (e.g. if an object is to be deleted, all relations and associations shall be removed).

7. All relations to an MO instance shall be removed prior to deleting an MO instance.

8. When part or whole NRM subtree is to be deleted, in the configuration data file the IRPManager shall first action delete of all associated child instances contained in the NRM subtree before actioning delete of MO parents instances i.e. delete actions on MO instances shall be specified in a recursive manner following the NRM hierarchy subtree from the lowest MO instances to the highest MO instances the IRPManager requires to be deleted. (The IRPAgent will not support autonomous deletion of all MO instance contained in a NRM subtree identified by a single delete action of the highest MO instance of the subtree).

9. When part or a whole NRM subtree is to be created, in the configuration data file the IRPManager shall first action the create action of parents MO instances before actioning the create of any child MO instances contained in the NRM subtree i.e. create actions on MO instances shall be specified in recursive manner following the NRM hierarchy subtree from the highest MO instances to the lowest MO instances the IRPManager requires to be created.

10.2.2
Upload files

1. No rules are identified i.e. it is not necessary that they be part of the scope of this document. They may be implementation specific and specified in other document as part of a specific solution.

Annex A (informative):
Scenarios

Supporting background informational only.

[image: image19.wmf]IPRManager

IRPAgent

subscribe()

startSession()

notifySessionStateChanged()

upload()

notifySessionStateChanged()

unsubscribe()

endSession()

IRPManager subscribes to receive

Bulk CM notifications.

IRPManager starts a new Bulk CM session

When session started state becomes IDLE,

and notification is sent to IRPManager

IRPManager requests and upload

When the upload has completed

IRPAgent sends notification

IRPManager ends the session

IRPManager unsubscribes from

Bulk CM notifications.

Figure A.1: Example 1: Successful Upload Session

[image: image21.wmf]IRPManager

IRPAgent

subscribe()

startSession()

notifySessionStateChange()

download()

notifySessionStateChange()

unsubscribe()

activate()

IRPManager subscribes to receive

Bulk CM notifications.

IRPManager starts a new Bulk CM session

When session started state becomes IDLE,

and notification is sent to IRPManager

IRPManager requests a download

When the download has completed

IRPAgent sends notification

IRPManager ends the session

IRPManager unsubscribes from

Bulk CM notifications.

IRPAgent starts the activation

notifySessionStateChange()

IRPAgent completes activation

and sends notification

endSession()

Figure A.2: Example 2: Successful Download and Activation without validation and preactivation.

[image: image22.wmf]IRPManager

IRPAgent

subscribe()

startSession()

notifySessionStateChange()

download()

notifySessionStateChange()

unsubscribe()

activate()

IRPManager subscribes to receive

Bulk CM notifications.

IRPManager starts a new Bulk CM session

When session started state becomes IDLE,

and notification is sent to IRPManager

IRPManager requests a download

When the download has completed

IRPAgent sends notification

IRPManager ends the session

IRPManager unsubscribes from

Bulk CM notifications.

IRPAgent starts the activation

notifySessionStateChange()

IRPAgent completes activation

and sends notification

endSession()

notifySessionStateChange()

preactivate()

IRPAgent starts the preactivation

notifySessionStateChange()

IRPAgent completes preactivation

and sends notification

validate()

IRPAgent starts the validation

IRPAgent completes the

validation and sends notification

Figure A.3: Example 3: Successful Download and Activation with validation and preactivation.

[image: image23.wmf]IRPManager

IRPAgent

subscribe()

startSession()

notifySessionStateChange()

download()

notifySessionStateChange()

unsubscribe()

activate()

IRPManager subscribes to receive

Bulk CM notifications.

IRPManager starts a new Bulk CM session

When session started state becomes IDLE,

and notification is sent to IRPManager

IRPManager requests a download

When the download has completed

IRPAgent sends notification

IRPManager ends the session

IRPManager unsubscribes from

Bulk CM notifications.

IRPAgent starts the activation

notifySessionStateChange()

IRPAgent completes activation

and sends notification

endSession()

notifySessionStateChange()

validate()

IRPAgent starts the validation

IRPAgent completes the

validation and sends notification

Figure A.4: Example 4: Successful Download and Activation with Validation.

[image: image24.wmf]IRPManager

IRPAgent

subscribe()

startSession()

notifySessionStateChange()

download()

notifySessionStateChange()

unsubscribe()

activate()

IRPManager subscribes to receive

Bulk CM notifications.

IRPManager starts a new Bulk CM session

When session started state becomes IDLE,

and notification is sent to IRPManager

IRPManager requests a download

When the download has completed

IRPAgent sends notification

IRPManager ends the session

IRPManager unsubscribes from

Bulk CM notifications.

IRPAgent starts the activation

notifySessionStateChange()

IRPAgent completes activation

and sends notification

endSession()

preactivate()

IRPAgent starts the preactivation

notifySessionStateChange()

IRPAgent completes preactivation

and sends notification

Figure A.5: Example 5: Successful Download and Activation with Preactivation.
Annex B (informative):
Bulk CM Application and Operation Principles

B1
Key Characteristics

· Bulk CM operations are not transaction based.

· The state machine does not allow looping. Can only progress forward through main states.

· If any errors are found in the configuration data, it shall not be possible to fix the configuration data. A new session should be started with new corrected configuration data being downloaded..

· Non-transitional interface (editors note: clarify)

· Sessions may be run in parallel. There shall not be any exclusion of specified changes between pararellel sessions. (Editors note: a “lock” option may be added, subject to further contribution).

· (Editors note: include some example exceptions)

Notification IRP Bulk CM IRP

Itf-N

NM

IRPManager

IRPAgent

EM

Notification IRP Bulk CM IRP

Itf-N

NE

IRPAgent

NM

NEs

IRPManager

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �Page: 1��� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �Page: 1��� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �Page: 1��� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �Page: 1��� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �Page: 1��� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

CR page 1

_1075381476.vsd

_1081844094.vsd

_1090241773.vsd

_1090241904.vsd

_1090241926.vsd

_1090241869.vsd

_1090241687.vsd

_1078660311.vsd

_1078660439.vsd

_1081844035.vsd

_1078660472.vsd

_1078660350.vsd

_1078579885.vsd

_1078579998.vsd

_1078576915.vsd

_1050416199.vsd

_1052038160.vsd

_1052038240.vsd

_1051961455.vsd

_991597401.doc

Namespace (containment hierarhy)

MO

Association

MIB

