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7.1 Call Control

The Call control network service capability feature consists of two interface classes:

1. Call manager, containing management function for call related issues

2. Call, containing methods to control a call

A call can be controlled by one Call Manager only. A Call Manager can control several calls..
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Figure 6 Call control classes usage relationship 

The Call Control service capability features are described in terms of the methods in the Call Control interface classes. Table 1 gives an overview of the Call Control methods and to which interface classes these methods belong.

CallManager
Call

enableCallNotification
routeCallToDestination_Req

disableCallNotification
routeCallToDestination_Res

callNotificationTerminated
routeCallToDestination_Err

callEventNotify
release

callAborted
deassignCall

callNotificationTerminated
getCallInfo_Req


getCallInfo_Res


getCallInfo_Err


superviseCall_Req


SuperviseCall_Res


superviseCall_Err


callFaultDetected


callEnded


setAdviceOfCharge


setCallChargePlan

Table 1
Overview of Call Control interface classes and their methods

7.1.1
Call Manager

The generic call manager interface class provides the management functions to the generic call Service Capability Features. The application programmer can use this interface class to create call objects and to enable or disable call-related event notifications.

Method
enableCallNotification()

This method is used to enable call notifications to be sent to the application.

Direction
Application to network

Parameters
appInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria

Specifies the event specific criteria used by the application to define the event required. Examples of events are “incoming call attempt reported by network”, “answer”, “no answer”, “busy”.

Returns
assignmentID

Specifies the ID assigned by the generic call control manager object for this newly-enabled event notification.

Errors
USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user’s privacy setting

Method
disableCallNotification()

This method is used by the application to disable call notifications. 

Direction
Application to network

Parameters
eventCriteria

Specifies the event specific criteria used by the application to define the event to be disabled. Examples of events are “incoming call attempt reported by network”, “answer”, “no answer”, “busy”.

assignmentID

Specifies the assignment ID given by the generic call control manager objectwhen the previous enableNotification() was called.

Returns
-

Errors
INVALID_ASSIGNMENTID 

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

Method
callEventNotify()

This method notifies the application of the arrival of a call-related event.

Direction
Network to application

Parameters
callReference

Specifies the reference to the call object to which the notification relates. 

eventInfo

Specifies data associated with this event. These data include originatingAddress, originalDestinationAddress, redirectingAddress and AppInfo (see for more explanation on these data the routeCallToDestination() method).

assignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment IDto associate events with event-specific criteria and to act accordingly.

appInterface

Specifies a reference to the application object which implements the callback interface for the new call.

Returns
-

Errors
-

Method
callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further communication will be possible between the call object and the application.

Direction
Network to application

Parameters
call

Specifies the call object that has aborted or terminated abnormally.

callSessionID

Specifies the call session ID of the call that has aborted or terminated abnormally.

Returns
-

Errors
-

Method
callNotificationTerminated()

This method indicates to the application that all event notifications have been terminated (for example, due to faults detected).

Direction
Network to application

Parameters
-

Returns
-

Errors
-

7.1.2
Call

The generic call interface class provides a structure to allow simple and complex call behaviour to be used.

Method
routeCallToDestination_Req()

This asynchronous method requests routing of the call (and inherently attached parties) to the destination party (specified in the parameter TargetAddress). The destination party is attached to the call via a passive leg. This means that the call is not automatically released if the destination party disconnects from the call; only the leg with which the destination party was attached to the call is released in that case. . 

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

responseRequested

Specifies the set of observed events that will result in a routeCallToDestination_Res() being generated. 

targetAddress

Specifies the destination party to which the call should be routed. 

originatingAddress

Specifies the address of the originating (calling) party. 

originalDestinationAddress

Specifies the original destination address of the call, i.e. the address as specified by the originating party. This parameter should be equal to the originalDestinationAddress as received by the application in the eventInfo parameter of the callEventNotify method.

redirectingAddress

Specifies the last address from which the call was redirected. 

appInfo

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

assignmentID
Specifies the ID assigned by the network SCS. The same ID will be returned in the routeCallToDestinationRes or Err. This allows the application to correlate the request and the result.

Returns
-

Errors
USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user’s privacy setting

Method
routeCallToDestination_Res()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.). 

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

eventReport

Specifies the result of the request to route the call to the destination party. It also includes the mode that the call object is inand other related information.

Returns
-

Errors
-

Method
routeCallToDestination_Err()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call could not be routed to the destination party (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.). 

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

errorIndication

Specifies the error which led to the original request failing.

Returns
-

Errors
-

Method
release()

This method requests the release of the call and associated objects.

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

cause

Specifies the cause of the release.

Returns
-

Errors
-

Method
deassignCall()

This method requests that the relationship between the application and the call and associated object be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports or call information reports requested, then these reports will be disabled and any related information discarded.

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

Returns
-

Errors
-

Method
getCallInfo_Req()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address. The call object will exist after the call is ended if information is required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Note: At the end of the call, the call information must be sent before the call is deleted.

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

callInfoRequested

Specifies the call information that is requested.

Returns
-

Errors
-

Method
getCallInfo_Res()

This asynchronous method reports all the necessary information requested by the application, for example to calculate charging.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

callInfoReport

Specifies the call information requested.

Returns
-

Errors
-

Method
getCallInfo_Err()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

errorIndication

Specifies the error which led to the original request failing.

Returns
-

Errors
-

Method
superviseCall_Req()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If an application calls this function before it calls a routeCallToDestination_Req() or a user interaction function the time measurement will start as soon as the call is answered by the B-party or the user interaction system.

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

time 

Specifies the granted time in milliseconds for the connection. treatment

Specifies how the network should react after the granted connection time expired.



Returns
-

Errors
-

Method
superviseCall_Res()

This asynchronous method reports a call supervision event to the application.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

report

Specifies the situation, which triggered the sending of the call supervision response.

usedTime

Specifies the used time for the call supervision (in milliseconds).

Returns
-

Errors
-

Method
superviseCall_Err()

This asynchronous method reports a call supervision error to the application.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

errorIndication

Specifies the error which led to the original request failing.

Returns
-

Errors
-

Method
callFaultDetected()

This method indicates to the application that a fault has been detected in the call.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call object in which the fault has been detected.

fault

Specifies the fault that has been detected.

Returns
-

Errors
-

Method
callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still receive some results (e.g. getCallInfoRes) related to the call. The application is expected to deassign the call object after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call object for the call.
report

Specifies the reason why the call was terminated.

Returns
-

Errors
-

Method
setAdviceOfCharge()

This method allows the application to the charging information that will be send to the end-users handset. 

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

aOCInfo

Specifies two sets of Advice of Charge parameter according to GSM

tariffSwitch

Specifies the tariff switch that signifies when the second set of AoC parameters becomes valid.

Returns
-

Errors
-

Method
setCallChargePlan()

Allows an application to include charging information in network generated CDR. 

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

callDetailRecordInfo

 Free Format string containing the application specific charging information 
 

Returns
-

Errors
-

Sequence Diagrams

The following section will describe some scenarios to illustrate the use of the methods described above.

Enable Call notification

The first task to perform in order to allow applications to provide call control related services to certain users is to enable call-related events for these users to trigger the application. This is done with the method enableCallNotification().
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Figure 7 Enable call notification

Number translation

The example in figure 8 shows a simple number translation application.

After the call is triggered (according to the criteria in a previous enableCallNotification()), the SCS notifies the application with an eventCallNotify() message. This allows the application to perform the needed actions and continue the call set-up via a routeCallToDestination_Req() message. The SCS relays the result of the call set-up (both positive and negative) to the application, which ends after that.
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Figure 8 Simple number translation

Call barring

The next example (Figure 9) shows how a call barring application can be implemented:
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Figure 9
Call barring application

Pre-paid with advice of charge

The next example shows how a pre-paid application can be implemented:

With a pre-paid application it is the application that will determine the charging for the call. This means that the application will hold the whole tariffing scheme needed and needs to control the whole call. For the call shown the following conditions apply:

-
It is a long call

-
Two tariff changes take place during the call.

-
The application will inform the user about the applicable charging (the methods needed for this are described in section 7.5.2).

After the application has been triggered, it sends a superviseCall_Req() message indicating that the application will be responsible for charging the call. Before the call is be routed to the requested destination(5), the application sends the allowed time for the call (4) and informs the user about the charging applicable (using the Advice of Charge functionality in the core network) for this call (3). The sent information consists of two sets of AoC information and a tariff switch. The application will be notified via the superviseCall_Res() message if the tariff switch expired during the supervised period. This allows the application to send a new set of AoC information and a new tariff switch. 

The application is notified of the expiration of the allowed time (7) and determines if the user has enough account left to continue with the call.

1
If there is enough account left a new time slot is allowed

2 Is there not enough account, the user will be notified and the call terminated after some time in order to allow the user to finish the call graciously.
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Figure 10 Pre-paid with AoC
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