
- 51 -
3G TS 23.127 version 3.0.0

3GPP Meeting SA2#13
Document
S2-001205

Sophia-Antipolis, June 14-15 2000

e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST
Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

23.127
CR
0010
Current Version:
3.0.0

GSM (AA.BB) or 3G (AA.BBB) specification number (

(CR number as allocated by MCC support team

For submission to:
SA#8
for approval
x

strategic

(for SMG

list expected approval meeting # here (
for information

non-strategic

use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects:
(U)SIM

ME

UTRAN / Radio

Core Network
x

(at least one should be marked with an X)

Source:
Ericsson, Siemens
Date:
24.6.2000

Subject:
Modification of call control SCF

Work item:
VHE/OSA

Category:
F
Correction

Release:
Phase 2

A
Corresponds to a correction in an earlier release

Release 96

(only one category
B
Addition of feature

Release 97

shall be marked
C
Functional modification of feature
X

Release 98

with an X)
D
Editorial modification

Release 99
x

Release 00

Reason for
change:

To improve the reporting on call ending, the Parlay group decided to introduce an additional operation, callEnded(). This operation will be invoked when the call has ended in the network. The operation contains an indication on the reason why the call has been ended and an indication on the party that caused the call to be ended.

Previously, termination of the call due to actions of the calling party would be reported with a routeRes() operation that corresponded to a routeReq() operation for the called party. Introduction of the callEnded() operation will also fix this. Furthermore, the operation will always be invoked when the call has ended and not only when the application has expressed its interest in this event with routeReq().

Clauses affected:
7.1

Other specs
Other 3G core specifications

(List of CRs:

affected:
Other GSM core specifications

(List of CRs:

MS test specifications

(List of CRs:

BSS test specifications

(List of CRs:

O&M specifications

(List of CRs:

Other
comments:

[image: image1.wmf]help.doc

 <--------- double-click here for help and instructions on how to create a CR.

7.1 Call Control

The Call control network service capability feature consists of two interface classes:

1. Call manager, containing management function for call related issues

2. Call, containing methods to control a call

A call can be controlled by one Call Manager only. A Call Manager can control several calls..

[image: image2.wmf]1

Call

Manager

Call

1

n

Figure 6 Call control classes usage relationship

The Call Control service capability features are described in terms of the methods in the Call Control interface classes. Table 1 gives an overview of the Call Control methods and to which interface classes these methods belong.

CallManager
Call

enableCallNotification
routeCallToDestination_Req

disableCallNotification
routeCallToDestination_Res

callNotificationTerminated
routeCallToDestination_Err

callEventNotify
release

callAborted
deassignCall

callNotificationTerminated
getCallInfo_Req

getCallInfo_Res

getCallInfo_Err

superviseCall_Req

SuperviseCall_Res

superviseCall_Err

callFaultDetected

callEnded

setAdviceOfCharge

setCallChargePlan

Table 1
Overview of Call Control interface classes and their methods

7.1.1
Call Manager

The generic call manager interface class provides the management functions to the generic call Service Capability Features. The application programmer can use this interface class to create call objects and to enable or disable call-related event notifications.

Method
enableCallNotification()

This method is used to enable call notifications to be sent to the application.

Direction
Application to network

Parameters
appInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria

Specifies the event specific criteria used by the application to define the event required. Examples of events are “incoming call attempt reported by network”, “answer”, “no answer”, “busy”.

Returns
assignmentID

Specifies the ID assigned by the generic call control manager object for this newly-enabled event notification.

Errors
USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user’s privacy setting

Method
disableCallNotification()

This method is used by the application to disable call notifications.

Direction
Application to network

Parameters
eventCriteria

Specifies the event specific criteria used by the application to define the event to be disabled. Examples of events are “incoming call attempt reported by network”, “answer”, “no answer”, “busy”.

assignmentID

Specifies the assignment ID given by the generic call control manager objectwhen the previous enableNotification() was called.

Returns
-

Errors
INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

Method
callEventNotify()

This method notifies the application of the arrival of a call-related event.

Direction
Network to application

Parameters
callReference

Specifies the reference to the call object to which the notification relates.

eventInfo

Specifies data associated with this event. These data include originatingAddress, originalDestinationAddress, redirectingAddress and AppInfo (see for more explanation on these data the routeCallToDestination() method).

assignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment IDto associate events with event-specific criteria and to act accordingly.

appInterface

Specifies a reference to the application object which implements the callback interface for the new call.

Returns
-

Errors
-

Method
callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further communication will be possible between the call object and the application.

Direction
Network to application

Parameters
call

Specifies the call object that has aborted or terminated abnormally.

callSessionID

Specifies the call session ID of the call that has aborted or terminated abnormally.

Returns
-

Errors
-

Method
callNotificationTerminated()

This method indicates to the application that all event notifications have been terminated (for example, due to faults detected).

Direction
Network to application

Parameters
-

Returns
-

Errors
-

7.1.2
Call

The generic call interface class provides a structure to allow simple and complex call behaviour to be used.

Method
routeCallToDestination_Req()

This asynchronous method requests routing of the call (and inherently attached parties) to the destination party (specified in the parameter TargetAddress). The destination party is attached to the call via a passive leg. This means that the call is not automatically released if the destination party disconnects from the call; only the leg with which the destination party was attached to the call is released in that case. .

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

responseRequested

Specifies the set of observed events that will result in a routeCallToDestination_Res() being generated.

targetAddress

Specifies the destination party to which the call should be routed.

originatingAddress

Specifies the address of the originating (calling) party.

originalDestinationAddress

Specifies the original destination address of the call, i.e. the address as specified by the originating party. This parameter should be equal to the originalDestinationAddress as received by the application in the eventInfo parameter of the callEventNotify method.

redirectingAddress

Specifies the last address from which the call was redirected.

appInfo

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

assignmentID
Specifies the ID assigned by the network SCS. The same ID will be returned in the routeCallToDestinationRes or Err. This allows the application to correlate the request and the result.

Returns
-

Errors
USER_NOT_SUBSCRIBED

Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED

Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION

Returned if the requests violates the end-user’s privacy setting

Method
routeCallToDestination_Res()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

eventReport

Specifies the result of the request to route the call to the destination party. It also includes the mode that the call object is inand other related information.

Returns
-

Errors
-

Method
routeCallToDestination_Err()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call could not be routed to the destination party (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.).

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

errorIndication

Specifies the error which led to the original request failing.

Returns
-

Errors
-

Method
release()

This method requests the release of the call and associated objects.

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

cause

Specifies the cause of the release.

Returns
-

Errors
-

Method
deassignCall()

This method requests that the relationship between the application and the call and associated object be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports or call information reports requested, then these reports will be disabled and any related information discarded.

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

Returns
-

Errors
-

Method
getCallInfo_Req()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address. The call object will exist after the call is ended if information is required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Note: At the end of the call, the call information must be sent before the call is deleted.

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

callInfoRequested

Specifies the call information that is requested.

Returns
-

Errors
-

Method
getCallInfo_Res()

This asynchronous method reports all the necessary information requested by the application, for example to calculate charging.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

callInfoReport

Specifies the call information requested.

Returns
-

Errors
-

Method
getCallInfo_Err()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

errorIndication

Specifies the error which led to the original request failing.

Returns
-

Errors
-

Method
superviseCall_Req()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If an application calls this function before it calls a routeCallToDestination_Req() or a user interaction function the time measurement will start as soon as the call is answered by the B-party or the user interaction system.

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

time

Specifies the granted time in milliseconds for the connection. treatment

Specifies how the network should react after the granted connection time expired.

Returns
-

Errors
-

Method
superviseCall_Res()

This asynchronous method reports a call supervision event to the application.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

report

Specifies the situation, which triggered the sending of the call supervision response.

usedTime

Specifies the used time for the call supervision (in milliseconds).

Returns
-

Errors
-

Method
superviseCall_Err()

This asynchronous method reports a call supervision error to the application.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

errorIndication

Specifies the error which led to the original request failing.

Returns
-

Errors
-

Method
callFaultDetected()

This method indicates to the application that a fault has been detected in the call.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call object in which the fault has been detected.

fault

Specifies the fault that has been detected.

Returns
-

Errors
-

Method
callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still receive some results (e.g. getCallInfoRes) related to the call. The application is expected to deassign the call object after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call object for the call.
report

Specifies the reason why the call was terminated.

Returns
-

Errors
-

Method
setAdviceOfCharge()

This method allows the application to the charging information that will be send to the end-users handset.

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

aOCInfo

Specifies two sets of Advice of Charge parameter according to GSM

tariffSwitch

Specifies the tariff switch that signifies when the second set of AoC parameters becomes valid.

Returns
-

Errors
-

Method
setCallChargePlan()

Allows an application to include charging information in network generated CDR.

Direction
Application to network

Parameters
callSessionID

Specifies the call session ID of the call.

callDetailRecordInfo

 Free Format string containing the application specific charging information

Returns
-

Errors
-

Sequence Diagrams

The following section will describe some scenarios to illustrate the use of the methods described above.

Enable Call notification

The first task to perform in order to allow applications to provide call control related services to certain users is to enable call-related events for these users to trigger the application. This is done with the method enableCallNotification().

[image: image3.wmf]CallControlManager

Call

Application

1:

enableCallNotification

()

Figure 7 Enable call notification

Number translation

The example in figure 8 shows a simple number translation application.

After the call is triggered (according to the criteria in a previous enableCallNotification()), the SCS notifies the application with an eventCallNotify() message. This allows the application to perform the needed actions and continue the call set-up via a routeCallToDestination_Req() message. The SCS relays the result of the call set-up (both positive and negative) to the application, which ends after that.

[image: image4.wmf]2:

callEventNotify

()

CallControlManager

 Call

Application

3: 'translate number'

5:

routeCallToDestination_

Req

()

6:

new()

7:

routeCallToDestination_

Res

()

4:

setCallback

()

Figure 8 Simple number translation

Call barring

The next example (Figure 9) shows how a call barring application can be implemented:

[image: image5.wmf]Call

Application

UICall

CallControlManager

8:

routeCallToDestination_

Res

()

7:

routeCallToDestination_

Req

()

4:

setCallback

()

5:

sendInfoAndCollect

()

6:

sendInfoAndCollect_Res()

2:

callEventNotify

()

3:

setCallback

()

Figure 9
Call barring application

Pre-paid with advice of charge

The next example shows how a pre-paid application can be implemented:

With a pre-paid application it is the application that will determine the charging for the call. This means that the application will hold the whole tariffing scheme needed and needs to control the whole call. For the call shown the following conditions apply:

-
It is a long call

-
Two tariff changes take place during the call.

-
The application will inform the user about the applicable charging (the methods needed for this are described in section 7.5.2).

After the application has been triggered, it sends a superviseCall_Req() message indicating that the application will be responsible for charging the call. Before the call is be routed to the requested destination(5), the application sends the allowed time for the call (4) and informs the user about the charging applicable (using the Advice of Charge functionality in the core network) for this call (3). The sent information consists of two sets of AoC information and a tariff switch. The application will be notified via the superviseCall_Res() message if the tariff switch expired during the supervised period. This allows the application to send a new set of AoC information and a new tariff switch.

The application is notified of the expiration of the allowed time (7) and determines if the user has enough account left to continue with the call.

1
If there is enough account left a new time slot is allowed

2 Is there not enough account, the user will be notified and the call terminated after some time in order to allow the user to finish the call graciously.

[image: image6.wmf]Application

CallControlManager

Call

UICall

1:

enableCallNotification

()

2:

callEventNotify

()

3:

setAdviceOfCharge()

5:

routeCallToDestination_

Req

()

7:

superviseCall_

Res

()

8:

superviseCall_

Req

()

9:

superviseCall_

Res

()

10:

setAdviceOfCharge

()

11:

superviseCall_

Req

()

12:

superviseCall_

Res

()

4:

superviseCall_

Req

()

13:

sendInfo_

Req

()

14:

sendInfo_

Res

()

15:

superviseCall_

Req

()

16:

superviseCall_

Res

()

17:

release()

6:

routeCallToDestination_

Res

()

Figure 10 Pre-paid with AoC

3GPP

_1011694424.doc
1

Call

Manager

Call

1

n

_1013413346.doc

2: callEventNotify()

CallControlManager

 Call

Application

3: 'translate number'

5: routeCallToDestination_Req()

6: new()

7: routeCallToDestination_Res()

4: setCallback()

_1013900130.doc

Call

Application

UICall

CallControlManager

8: routeCallToDestination_Res()

7: routeCallToDestination_Req()

4: setCallback()

5: sendInfoAndCollect()

6: sendInfoAndCollect_Res()

2: callEventNotify()

3: setCallback()

_1013900053.doc

Application

 CallControlManager

Call

 UICall

1: enableCallNotification()

2: callEventNotify()

3: setAdviceOfCharge()

5: routeCallToDestination_Req()

7: superviseCall_Res()

8: superviseCall_Req()

9: superviseCall_Res()

10: setAdviceOfCharge()

11: superviseCall_Req()

12: superviseCall_Res()

4: superviseCall_Req()

13: sendInfo_Req()

14: sendInfo_Res()

15: superviseCall_Req()

16: superviseCall_Res()

17: release()

6: routeCallToDestination_Res()

_1013257121.doc

CallControlManager

Call

Application

1:

enableCallNotification

()

_997805625.doc
How to create a CR
Michael Sanders, 3GPP support team, (last updated 2/09/99)

1)
Open the CR cover sheet with MS Word 97. The lastest version of the CR coversheet can be found at:

ftp://ftp.3gpp.org/information/3gCRF-??.DOC

2)
Fill out all areas that are relevant on the CR cover sheet - only the areas that have yellow shading shall be filled out. See Annex A of these instructions for further detail.

3)
Open the specification to which you wish to make a change. It is very IMPORTANT to ensure that you are using the latest version of the specification to make the change. The latest versions of all approved 3G specifications is located at:

for the 3GPP: ftp://ftp.3gpp.org/specifications/ for SMG: http://docbox.etsi.org/tech-org/document/smg/specs

Do a "save as" using a file name related to the tdoc number (e.g. T3-99123.DOC).

4)
If the formatting looks incorrect (most easily noticed by the fact that there is no space between paragraphs), it may be because you do not have the correct document sheet in your MS Word style directory. All 3GPP specification use the style sheet 3GPP_70.DOT. This can be downloaded from:

ftp://ftp.3gpp.org/information/3gpp_70.dot

5)
Go to the beginning of the heading of the first subclause which you want to change. Press <CTRL><SHIFT><HOME> to select everything before that point and delete it.

6)
Switch to the window in MS word that contains your CR cover sheet and do a <CTRL>A <CTRL>C to select and copy the entire sheet (including the section break at the end). Switch back to the other window with the specification to be changed and paste it in.

7)
Between group of changed pages in the CR, insert a section break (insert / break / next page/)

8)
When all the changes have been made (using the "tools / track changes" feature of MS Word 97), the headers and page number need to be corrected other the headers will contain an error message like "error, reference not found". You can fix this by changing to page layout mode (view / page layout) to see the headers. Then, go to the menu item "view / header and footer", select the frame that contains the error message(s) ini the header and delete them (there are normally 2). Do not delete the page number in the middle. On the left side, write the spec name and current version number For example, "3G TS 21.111 version 3.0.0 (1999-04)". Go back to normal view.

9)
For each group of changes, insert the correct starting page number. The number should be that which is a clean unmodified specification. It is only a guide to the reader only and so they can be +/- 1 page number wrong. Insert the page number using the following method. Go to the line following the first section break in your CR. Choose the menu item insert / page number / format / start at and insert the correct starting page number for that group of changes. click "OK" and then "CLOSE" (don't press "OK" at this last step). Repeat this step for each section break.

10)
When you have finished making all changes, go to "tools / track changes / highlight changes" and uncheck the "track changes while editing" box, otherwise the page numbers in the headers will be difficult to read. Make sure that the two other options in this box (highlight changes on screen" and "highlight changes in printed document" are both maked "X".

Examples of expressions of prevision in 3GPP specifications

To ensure that everybody else understands your proposed chnaged the same way that you do, it is very important to keep to the following rules:

SHALL: To be used to indicate a requirement. e.g. "The ME shall reset the USIM" is correct Do not use "The ME resets the USIM" or "the ME must reset the USIM"

SHOULD: To be used to indicate recommendation. i.e. if, among several possibilities one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action is deprecated but not prohibited.

MAY: To be used to indicate permission. To be used instead of phrases such as "is permitted", "is allowed" or is permissible". The opposite of "may" is "need not".

CAN: To be used to indicate possibility and capability. To be used instead of phrases such as "be able to", "there is a possibility of" or "it is possible to".

A more detailed guide to the 3GPP drafting rules can be found on the 3GPP server at:

ftp://ftp.3gpp.org/information/drafting-rules.pdf

ANNEX A
The CR cover sheet

This annex provides further information on how to fill out the cover sheet of a CR.

The header:

a)
The header, including the TSG or Working Group, the tdoc number (normally obtinaed from the 3GPP support team) and the meeting location and date.

The title box:

b)
The change request number. This is a 3 digit number and is allocated by the 3GPP support team project manager of the relevant WG. For GSM specifications, it is prefixed with an "A"

c)
The 3G or GSM specification number (e.g. 21.111 for 3G or 12.05 for GSM).

d)
The TSG or SMG plenary meeting to which this CR will be submitted to if it gets agreed at the WG meeting.

e)
for approval/for information: one box only shall be marked with an "X"

Proposed change affects:

f)
At least one box shall be marked with an "X"

Source:

g)
The company name of the author of the CR. If the CR has already been agreed at a Working groups or sub working group, meeting, the subgroup name (and Tdoc number) should be used instead.

Subject:

h)
One line (only) of concise text that describes the subject of the CR. Details should be put under "reason for change"

good examples:
"Clarification to FETCH command"

"Alignment of operation and parameter names"

recently used

bad examples:
"correction"

"editorial correction"

"correction to TS xxx.yy"

"various improvements"

Work item:

h)
The name of the 3G work item for which the CR is relevant.

Category and release:

i)
Choose one category only

Reason:

j)
This should be 1 to 10 lines of text that describes in further detail the reasons why the change is necessary and how the change is done.

Clauses Affected:

m)
Each subclause that is affected by the change should be listed here. New subclause number can be followed by " (new) ".

Other specs affected:

n)
Other 3G core specifications: to be used if the CR is linked to a CR for another 3G specification.
Other 2G core specifications: to be used if a CR is also needed for a GSM or other 2G specification.

MS test specifications: to be used if a change is needed to the MS test specifications.

BSS test specifications: to be used if a change is needed to the base station test specifications.

O&M specifications: to be used if a change is needed to O&M specifications.

When listing other CRs in part n) use, for example, the form "21.111-CR001" or "12.05-A123"

How to create a CR for 3G or SMG specifications.

File location: http://ftp.3gpp.org/information/3gCRF-??.doc

