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1    Introduction
The test tolerance to be used for the ‘average’ antenna test requirement in TS 34.114 is still outstanding. The issue is how much the standard deviation of the error of a single measurement is reduced in the averaging process. Two proposals have been presented: in [1] a reduction of 1/(3 is suggested by assuming independent errors between measurement samples, whereas [2] proposes 1/(2 due to dependent errors. 
In this contribution we take a further look at the dependence of the errors based on the analysis made in [1]. We also propose values for the test tolerance: around 0.9 dB for TRP and 1.2 dB for TRS. 
2    Impact of dependent errors
There are actually two issues regarding the dependence. Firstly, it is not certain that the Gaussian approximation holds for the sum of the measured values in the calculation of the average if there is dependence between these. If this approximation holds for the ‘average’ error we can use the following standard formula for calculating the confidence interval (test tolerance) when the variance is “known”: 
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where 
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 is the error of the ‘average’ (keeping the notation in [1]) and Q is the CDF of a standardised Normal distribution. In [1] independence has been assumed, but the prerequisites for the standard Central Limit Theorem are still not fulfilled. However, the Gaussian approximation holds under much weaker conditions, which may even include the case in which there is weak dependence.

Secondly, and perhaps more contentious, it is the dependence between measured values (three channels on each side of the dummy head) that has an impact on the variance of the error and hence the confidence interval. The error is approximately  
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with
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 the “true” value and the measurement error of channel j in logarithmic scale and
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the average of the “true” average in linear scale (see [1] for more description). To account for dependence we first note the relation between the covariance of the linear values 
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where 
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 is the variance of  (the Gaussian variables)
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. Next we assume that the covariance between any pair of measurements is constant, and since 
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 is small we can write 
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This means that there exists e.g. a systematic part of the error that is the same for all measurements. The variance of the error is then 
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This can be simplified to
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where the second factor accounts for the variability of the (true) measurement values. We can now look at the impact of the correlation on the difference between the variance of the ‘average’ and that of a single measurement (for which 
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3    Reduction of the variance

The reduction of the standard deviation proposed in [1] and [2] is 1/(3 and 1/(2, respectively. This means that the reduction of the variance 
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should be 1/3 or 1/2.
In [1] the factor accounting for the variability of the measured values is assumed to be
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by using an argument based on the exponential distribution. A large margin was used to in order to obtain a general result (not depending on MS/UE type) and to account for possible dependence. In practice, it seems that this factor is much lower, extensive data provided by T-Mobile [3] suggests that it is smaller than 1.12. Rounding up to 1.2, this means that the correlation can be (n = 6):
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for a reduction of more than 1/(3. If 1/(2 is assumed as in [2] then
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which suggests more systematic errors. Are they?
4    Degree of dependence?     
Assessing the degree of dependence is not trivial; [2] contains a list of the error contributions to a single measurement, see Table 1 below. What is the degree of dependence between errors of different measurements taken?
	Uncertainty Source
	Comment
	Frequency independent
	Position independent
	Standard Uncertainty [dB]

	1) Mismatch of receiver chain 
	Гpower meter <0.05    Гprobe antenna connection <0.16
	No
	No
	0.05

	2) Insertion loss of receiver chain
	Systematic with Stage 2 (=> cancels)
	-
	-
	0

	3) Influence of the probe antenna cable
	Systematic with Stage 2 (=> cancels)
	-
	-
	0

	4) Absolute antenna gain of the probe antenna
	Systematic with Stage 2 (=> cancels)
	-
	-
	0

	5) Measurement Receiver: uncertainty of the absolute level
	Power Meter
	No
	No
	0.03

	6)Measurement distance

a) Offset of DUT phase center
	Δd=0.05m
	No
	Yes
	0.08

	7) Quality of quiet zone
	Standard deviation of E-field in QZ measurement
	Yes
	Yes
	0.5

	8) DUT Tx-power drift
	Drift
	No
	No
	0.12

	9) Uncertainty related to the use of SAM phantom: 
	Standard SAM head with standard tissue simulant
	-
	-
	0

	10) Coarse sampling grid
	Negligible, used 
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	11) Repeatability
	Monoblock, clamshell and slide design used for testing  
	Yes
	Yes
	0.23

	12) Uncertainty of network analyzer
	Manufacturer’s uncertainty calculator, covers whole NA setup
	No
	No
	0.29

	13) Mismatch of receiver chain
	Taken in to account in NA  setup uncertainty 
	-
	-
	0

	14) Insertion loss of receiver chain
	Systematic with Stage 1 (=> cancels)
	-
	-
	0

	15) Mismatch in the connection of calibration antenna
	Taken in to account in NA setup uncertainty
	-
	-
	0

	16) Influence of the feed cable of the calibration antenna
	Gain calibration with a dipole
	No
	No
	0.17

	17) Influence of the probe antenna cable
	Systematic with Stage 1 (=> cancels)
	-
	-
	0

	18) Uncertainty of the absolute gain of the probe antenna
	Systematic with Stage 1 (=> cancels)
	-
	-
	0

	19) Uncertainty of the absolute gain of the calibration antenna
	Calibration certificate
	No
	No
	0.29

	20)Measurement distance:

Calibration antenna’s displacement and misalignment 
	d=3m, Δd=0.05m, θ=2°
	No
	No
	0.17

	21) Quality of quiet zone
	Standard deviation of e-field in QZ measurement, Gain calibration
	Yes
	No
	0.5


Table 1. List of error contributions to a single measurement [2].
Looking at the biggest contribution to the error, the quiet zone (QZ), it is assumed that it is dependent on the position that in turn suggests that the error for the left- and right-hand sides of the dummy can be completely different whence the QZ errors between some of the 6 measurement points can be considered independent. The frequency dependence is related to this: one could assume that the QZ can be frequency dependent for some bands that constitute large blocks like the 60 MHz Band I. The QZ error is essentially the ripple caused by the interference from the spurious reflections and the direct path. If the measured channels are taken over a 60 MHz block the ripple pattern for a certain position may change considering the size of many test chambers. The assumption on frequency independence of the QZ may thus be band specific (i.e. for different block sizes). Hence, for some bands there would be “almost” independent QZ errors between the 6 measured channels. 
The uncertainty of the network analyser, another big contribution, could of course also be dependent on the frequency and thus be different for each channel measured. In all, this suggests that that the measurement errors per channel have a large degree of randomness. But as mentioned above: to prove this is not trivial, and there are certainly systematic parts like the power drift. 
The assumption that the covariance is the same for each pair of measurements is probably not likely in practice, but may still represent a situation where there are systematic (constant) errors in the measurements. 
5     Proposal for the test tolerance
The one-sided 95% (5%) percentile of the estimated error 
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 at the lower (upper) end for TRP (TRS) can be obtained from
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expressed in dB. The positive sign applies for TRS and the negative for TRP. The term 
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represent a (small) static error due to the log-linear conversion (errors and measured values are returned in dB scale), 
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 is the standard deviation. If we assume constant covariance between any pair of measurements as above we obtain 
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The last square root equals 1/(3 and 1/(2 following [1] and [2], respectively. Using these confidence intervals, the probability that a ‘good’ mobile is failed is 5%. 
If we assume the provisional 
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 dB in [4], we get the results in Table 2.
	Test tolerance in dB

	
	[1] (TeliaSonera)
	[2] (Nokia)

	TRP
	0.75
	0.94

	TRS
	1.13
	1.36


Table 2. Proposed test tolerances based in [1] and [2]
These proposals correspond to the extremes in cases for which the correlation is in the range
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where [1] corresponds to the lower range and [2] to the upper with the “variability factor” (Section 3) set to 1.2 (rounded off upwards from the maximum 1.12 observed in [3]). The deliberations in Section 4 suggest that there is a large degree of randomness in the errors of different measurements. However, to account for some dependence one could pick a value in the middle of the range above, e.g.
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 for which the test tolerance will be approximately 0.9 dB for TRP and 1.2 dB for TRS. 
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