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1. Introduction
In the current WI of AAS, the power allocation between inner cell and outer cell is equal in vertical cell splitting scenarios. The AAS performance can be optimized by adjusting the electrical down-tilt or mechanical down-tilt or combined one. However, power allocation could be also an alternative way to optimize the performance in this scenario. In this contribution, power allocation in vertical cell splitting is analyzed and spatial ACLR is revised with the factor of power allocation. Simulation results are also provided to show the impacts of power allocation on the coexistence performance of AAS. 
2. Discussion
2.1 Reasons why power allocation is essential
In the current WI of AAS, the equal power allocation between inner cell and outer cell is still an ideal assumption. In reality, the coverage area and the number of served UEs of inner cell may have a big difference with that of outer cell. Meanwhile, the propagation channel of inner cell should be relatively better and the propagation channel of outer cell should be relatively worse. According to the classical power filling algorithm, more power should be allocated to the UE with better channel condition and less power should be allocated to the UE with worse channel condition. Therefore, the power allocation of inner cell and outer cell should also be investigated. 
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Figure1. The illustration of vertical cell splitting
2.2  The description on power allocation 
The vertical cell splitting scenario of AAS is shown Figure 1. Assuming the maximum transmit power of AAS is
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, the transmit power of inner cell and outer cell can be described as
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where 
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is the ratio between the power of inner cell and total power.

2.3  Spatial ACLR
The existing spatial ACLR model of AAS is derived with the assumption of equal power allocation. In this section, flexible power allocation is also considered and the modified spatial ACLR model is derived. 
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Figure2. The illustration of AAS supporting vertical cell splitting
Assuming the signal of cell m is
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, with Fourier transformation, the signal of cell m can be decomposed as
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Where n is the index of antenna element and PA, m is the index of signal of different cells, 
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 is the amplitude and phase of sine signal 
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 is used to adjust the phase at the PA n. Therefore, the signal feeding into the antenna element n can be described as
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As shown Figure 2, the signals from inner cell and outer cell will be combined together and then transferred into PA, hence the signal at antenna element n can be denoted as
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If the PA follows the simple memory-less and polynomial characteristic, its transfer function can be modeled as 
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The third-order inter-modulation signal can be denoted as:
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From the equation (7), sine signal 
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 is determined by 
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is dependent on the power allocation between inner cell and outer cell and 
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 is dependent on the electrical down-tilt between different cells. 
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can be described as following
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When power allocation factor 
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 is considered, composite pattern of third order inter-modulation signal can be described as
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Where                
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By simple derivation, the spatial ACLR model of vertical cell splitting can be generalized as
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When the transmit power of inner cell and outer cell is equal, namely
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, we can get the equation (17) 
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It’s easily found that this equation is the same with ACLR model defined in [1].
3. Simulation Results
In this contribution, E-UTRA Macro to E-UTRA Macro coexistence scenario is evaluated by system-level simulation to investigate the impacts of power allocation on the spatial characteristics of AAS BS, as shown in Table 1. The channel frequency of the aggressive system is located tightly besides that of the victim system.
Table 1. Coexistence scenarios of vertical cell splitting 
	scenario
	  Aggressive system
	Victim system

	1a
	Vertical Cell Splitting E-UTRA Macro system 
	Legacy E-UTRA Macro system

	
	
	

	
	
	

	1c(baseline)
	Legacy E-UTRA Macro system
	Legacy E-UTRA Macro system
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Figure 3 The impacts of power allocation on the victim system
As shown in Figure 3, the cell average throughput loss and cell edge throughput loss of victim system will decrease with the increasing ACLR requirement, namely the adjacent channel interference from the AAS BS is decreasing. When ACLR is 45dB, the difference of cell average throughput loss among different power allocation methods is less than 0.5% and the difference of cell edge throughput loss among different power allocation methods is less than 4%. Therefore, different power allocation methods will have quite a little impact on performance loss of victim system. 
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Figure 4 The impacts of power allocation on the victim system
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Figure 5 The impacts of power allocation on the victim system
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Figure 6. The impacts of power allocation on the victim system
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Figure 7. The impacts of power allocation on the victim system
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Figure 8. The impacts of power allocation on the victim system

As shown in Figure 4-8, the impacts of the different correlation levels of ACLR on performance loss of victim system are also investigated in different power allocation scenarios. Simulation results indicate that when ALCR is 45dB, the difference of performance loss between different correlation levels is quite little. Therefore, correlation level will also have quite a little impact on the performance loss of victim system.
4. Conclusions
In this contribution, flexible power allocation between inner cell and outer cell is considered and the generalized spatial ACLR model is established. Through system level simulation, simulation results show that different power allocation methods will have quite a little impact on performance loss of victim system, when ACLR is 45dB.
Proposal: different power allocation methods between inner cell and outer cell should also be an alternative way to optimize the performance of AAS. 
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