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1. Introduction

This contribution continues the discussion in [1,2,3] on appropriate interpolation methods in the DL EVM definition.
The following was agreed in [2]:
· Working assumption is best fit approach with a subset of channel coefficients used as optimisation variables (DoFs)
· Working assumption is 1D interpolation in frequency domain only, on a per subframe basis

· Interpolated channel coefficients kept constant within a subframe (no time-tracking)

· Working assumption is periodic Sinc interpolation method as per R4-070227, eqn (2)

· The exact number of degrees of freedom (DoF) used for optimisation, parameter  L in R4-070227)) is TBD, this value should depend on the E-UTRA BW.
The formula for best fit can be expressed as follows where minimization is performed over the set of best-fit parameters (see [1]):
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in which R is the reference signal (symbols) and Z´(t,f) is the modified signal (symbols) according to
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 for each subcarrier location are obtained from 1D-interpolation from the DoFs during the best fit process.

2. Discussion
According to our understanding the motivation for the proposal in [3] of using approximation with low-order/frequency (trigonometric) polynomials is to capture the possible exploitation of channel correlation in the frequency domain within the UE channel estimation (CHE), in particular for MP channels with little delay spread like PedA. A CHE optimised for highly frequency-correlated channels like PedA, would not be able to identify and equalise high oscillatory amplitude and/or phase variations from BS TX filters. A restriction to low-frequency polynomials would ensure that high oscillatory amplitude and/or phase variations would become an EVM penalty.
According to our understanding of [3], eqn (2), 
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 the DoFs used in the best fit would be the low-frequency Fourier coefficients 
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 (up to degree L-1) used in the trigonometric approximation of the frequency-domain channel transfer function. The  
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 for each subcarrier location could then be obtained via IFFT from these DoFs. In an actual implementation within test equipment (TE), start values for the DoFs 
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 required in the best-fit process could be obtained by FFT from (noisy) channel estimates obtained from the reference symbols.
While we basically concur with this overall rationale of using band-limited approximation, we would like to raise 2 concerns:
1. trigonometric (= periodic sinc) approximation as proposed in [2,3] leads to Gibbs-distortion resulting in very poor channel coefficients especially at carrier edge RBs. We believe that this large distortion is not representative of an actual UE CHE and propose instead the use of low-order Chebychev approximation.
2. The proposal in [3] of using only 3 complex DoFs (i.e. 
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) is in our opinion not sufficient to approximate even highly correlated channel amplitude/phase variations. We believe that with Chebychev approximation polynomials of degree ≤ 5 are required for 5 MHz UTRA.
The following example plots will illustrate this. The function to be approximated was made to resemble the amplitude distortion across 5 MHz of the PedA snapshot shown in Appendix A. The used MATLAB code to generate these Figures is attached in Appendix B.
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Fig. 1. Trigonometric approximation with a) degree 2 as per proposal in [3] and b) degree 5
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Fig. 2. Chebychev approximation with a) degree 2 and b) degree 5
As can be seen from Fig. 1 a),b), trigonometric approximation exhibits a large error due to the Gibbs effect which cannot be reduced in magnitude by increasing the order of the polynomials. This is a result of the fundamental error in assuming the channel amplitude and/or phase variations to be periodic while they are not. 
One remedy is to use Chebychev approximation of low degree N,  
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 for restricting channel amplitude/phase variations to low oscillatory modes. Plots of the Chebychev polynomials of degree ≤ 5 are shown in Appendix D. Chebychev approximation is closely related to trigonometric approximation [5,6,7] and works also well for non-periodic functions. In fact, Chebychev polynomial approximation of the function  f(x)  across the interval [-1, 1] is nothing else than trigonometric approximation with cosine harmonics of the function 
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 see [5,6,7]. Fig 2 shows the use of Chebychev approximation for the above example.
The DoFs used in the best-fit would be the 
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 in this expansion. That is to say, that the 
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 used in eqn (2) are each function of the respective Chebychev expansion coefficients, i.e. 
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 and the joint minimisation (best-fit) of eqn (1) is to be carried out over the optimisation variable set 
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While there are many methods available for computing start values for the DoFs 
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 needed during best-fit, one option is to use the FFT (in fact DCT) on (noisy) channel estimates obtained from reference symbols and mapped onto an appropriate grid of Chebychev points 
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. The IFFT (i.e. DCT) can then be used for computing from the 
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 the desired function values f(x) at Chebychev point locations x. See Appendix B for such a FFT
-based example implementation of Chebychev approximation. This is for illustration only and by no means optimised.
Chebychev approximation requires real data inputs and thus needs to be separately carried out for either amplitude and unwrapped phase response or, alternatively, on the I/Q representation of the channel transfer function (this also requires unwrapping of phase information).
Turning now to the question of an appropriate degree of the approximation, Fig’s 1a) and 2a) clearly show that using only 3 DoFs (=degree 2) as proposed in [3] is not sufficient to approximate the channel transfer function even for this highly correlated example case. Fig. 2 b) shows that a Chebychev polynomials of degree ≤ 5 (i.e. 6 DoFs) approximates the slowly changing amplitude response well enough.

Fig. 3 a), b) shows Chebychev interpolation of the amplitude response of a MP channel with oscillations resembling the TU20 snapshot example of Appendix A across 5 MHz. This indicates that for MP rich channels Chebychev interpolation would require approximately the same amount of DoFs as provided by the reference symbol locations, i.e. in the 5 MHz case 300/6 = 50. 
Regarding the BS EVM one may though take the position, that the emphasis should be on the worst case in terms of removing BS TX impairments, i.e. assuming a CHE optimised for highly correlated MP channels. Without having done more substantial studies regarding the accuracy of Chebychev interpolation for the various correlated MP channel responses we would recommend degree 5 to be used for the Chebychev polynomials within the EVM definition (i.e. 6 DoFs). Given a potential range for the degree of perhaps 5 … 50, this would be clearly at the low-frequency end of the approximating polynomials.
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Fig. 3. Chebychev interpolation with a) degree 9 and  b) degree 49 
Fig. 4 shows further problems with the choice of trigonometric interpolation for a BS signal predominantly distorted by the linear phase response of the spectrum shaping FIR filter. It was proposed in [4] to remove in eqn (2) the correction factors 
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 due to the time offset 
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 and have the CHE take care of this carrier de-rotation. Fig 4 a), b) shows in (unwrapped) form the resulting rotating phase response at the optimum timing (~18 samples offset to keep the TX filter CIR in the middle of the CP). Obviously with only 3 DoFs the Nyquist sampling theorem is badly violated and ~30 DoFs are required to resolve the phase rotations, but then still the large Gibbs distortion completely destroys the signal at the edge RBs. 
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Fig. 4. Trigonometric interpolation with a) degree 2 and b) degree 29
Finally we want to give an illustrative example to what extent the proposed Chebychev approximation could reduce impact of the BS TX filter impairments as measured by the EVM. The 5 MHz TX chain contains a 62-tap FIR spectrum shaping filter with 0.2 dB passband amplitude ripple, a 50-tap image rejection filter from up-sampling with 0.1 dB ripple and an IIR (“analog”) image rejection filter (5th order Chebychev, 0.2 dB passband ripple) which intentionally generates large GDD on the edge RBs (see Appendix C). The nominal sample timing instant was used. Clipping and PA models were off.
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Fig. 5. Chebychev approximation of degree 5 of the amplitude a) and phase response b) of the TX signal
Table 1. EVM results
	
	No equalizer, only “global” amplitude & phase correction (1 DoF each)
	ZF equalizer with perfectly known amplitude & phase
	ZF equalizer with amplitude & phase interpolated from a degree 5 Chebychev approximation (2 x 6 DoFs)

	Mean EVM of the “edge RB”
	49 %
	1.1 %
	1.6 %

	Mean EVM of the remaining RBs
	11.8 %
	0.8 %
	1.9 %


As can be seen, the degree 5 Chebychev approximation is effective in removing the large impact from the nonlinear phase response, however, filter amplitude distortion are poorly resolved and continues to pollute the EVM.
3. Summary and Conclusions

The following is proposed as working assumption for the DL EVM:
1. Use of Chebychev approximation 
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 for obtaining subcarrier amplitude and phase during the best fit approximation. 
2. Separate Chebychev approximation for amplitude and (unwrapped) phase or, alternatively, on the I/Q representation of the channel transfer function, TBD.

3. The frequency range of the functions to be approximated should be transformed to the interval [-1, 1]..

4. The DoFs used in the best-fit are the Chebychev expansion coefficients 
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 for the 2 respective approximations, i.e.  
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 (or similarly for I / Q data)
5. # of DoFs is proposed [6] (amplitude) + [6] (phase) for 5 MHz E-UTRA. For higher BW options correspondingly more DoFs are needed. BW options < 5 MHz are FFS.
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Appendix A –MP channel snapshots
a) TU20
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b) Extended PedA
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Appendix B – Matlab code for trigonometric and Chebychev approximation based on FFT

a) Code for Figs 1 a), b), 2a), b)
% example to show Gibbs phenomenen

N = 5;      % degree of approximation

x = linspace(-3, -1, 150);

y = (sin(x)).^3;

% perform trigonometric approximation

trig_approx(y, N);

% perform Chebychev approximation

cheby_approx(y, N);
function y_interp = trig_approx(y, N)

% y is vector of data points on an equi-spaced grid

% N order of trigonometric approximation

% generate equi-spaced grid in [0, 2*pi[ pertaining to y

M = length(y);

x = 2*pi*(0:M-1)/M;

% calculate the approximate Fourier series coefficients via FFT

Y = fft(y); 

% retain only coefficients up to degree N (these are the DoFs) ==> low frequency approximation 

Y(N+2 : end-N) = 0;

% calculate the approximated function values via IFFT

y_interp = real(ifft(Y));

figure; plot(x, y, 'b', x, y_interp, 'r');grid; 

title('trigonometric approximation'); legend('original function', 'approximation');

b) Code for Chebychev approximation using FFT

function y_interp = cheby_approx(y, N)

% y is vector of data points on an equi-spaced grid

% N order of Chebychev approximation

% generate equi-spaced grid in [-1, 1] pertaining to y

M = length(y);

x_equi = linspace(-1, 1, M);

% get the function input values onto the Chebychev grid

x_cheby = cos((0:M)*pi/M);

y_cheby = interp1(x_equi, y, x_cheby, 'linear');

% build the periodic function input values on the unit circle (for use of FFT rather than FCT)

z = [y_cheby fliplr(y_cheby(2:end-1))];

% calculate the approximate Chebychev series coefficients via FFT (cosine integral approximated by trapez rule)

Z = real(fft(z)); 

% retain only coefficients up to degree N (these are the DoFs) ==> low frequency approximation 

Z(N+2 : end-N) = 0; 

% calculate the approximated function values via IFFT

y_cheby_interp = real(ifft(Z)); 

y_cheby_interp = y_cheby_interp(1:length(y_cheby));     % due to use of FFT rather than FCT

% map the interpolated function values back onto the original equi-spaced grid

y_interp = interp1(x_cheby, y_cheby_interp, x_equi, 'linear');

figure; plot(x_equi, y, 'b', x_equi, y_interp, 'r'); grid; 

title('Chebychev approximation'); legend('original function', 'approximation');

Appendix C – GDD of the IIR filter model used for the results in Fig. 5
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· Sample duration = 1/(4*2*3.84e6) = 32.5 ns
· GDD across passband ~9 samples = 292.5 ns
Appendix D – Chebychev Polynomials up to degree 5
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� FFT, because MATLAB does not include the FCT
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