3GPP TSG RAN3#57

R3-071438
Athens, GREECE 20-24th August 2007
Agenda Item:
13.2.4b
Source:
Alcatel-Lucent
Title:
Load Balancing SON Use case
Document for:
For Discussion and Approval

1 Introduction

According to the section 6.21 of TR3.018 (Support for self-configuration and self-optimisation) the phase of Optimisation/Adaptation (Phase C) is composed of the following functions:

· c-1: Neighbour list optimisation

· c-2: Coverage and capacity control

Capacity and coverage can be improved by resolving the congestion of a single cell by balancing the traffic with less-loaded adjacent cells. However, in general, the traffic fluctuation and the mobile environment unpredictability make fixed parameter settings inaccurate and insufficient for this.

This paper proposes a SON scenario where some intra-system handover decisions (UEs- eNodeBs assignments) are optimized according to the load of the cell, the load of adjacent cells and the particular distribution of mobiles under these cells. Therefore, the best balance of load between cells is achieved autonomously even when there is traffic fluctuation or imbalances.
2 Description
To alleviate imbalances in cell loads on the time scale of minutes, a load balancing mechanism is proposed here-below that operates in a decentralized form.
The following algorithm aims to obtain optimized capacity by spreading the load across eNodeB cells coverage areas through careful load-initiated hand-offs. The necessity of careful hand-offs in order to actually achieve an efficient load balancing is reflected in the numeric results (see Annex).
2.1 Definitions

· Temporary Load (TL): is what the aggregate load of an eNodeB would become if the current assignments UE- eNodeBs would be accepted. For example, for one mobile, the individual load can be the MRC multiplied by the bit rate and the cumulated individual loads gives the aggregate load.
· Temporary Price (TP): is determined at each NodeB so as to reflect its degree of load relative to other NodeBs in the network. The temporary price is determined, iteratively, by passing load values between NodeBs. The load values are adjusted according to the actual assignment of UEs to NodeBs or according to supposed assignments
· Shadow Price (SP): final value of the Temporary Price after end of the algorithm. It is the final quantity used by a eNodeB to attract or repel mobiles to reach a balanced load. This price value doesn’t lead to oscillations. The shadow price is also often referred to as“Dual Price” or “Marginal Price” in the “Optimisation community”.
· Mobile Resource Coefficent(MRC): This is the resources per unit transmitted bit required to support a UE at a given NodeB. This is determined based on UE measurements taking into account information like the path loss. There is one MRC for each UE- eNodeB pair which represent a potential connection (e. g. adjacent eNodeBs).

In these definitions and the following algorithm description, eNodeB actually stands for one eNodeB cell for the simplicity of the presentation

.
2.2 Description of the Load Balancing algorithm

When the load balancing algorithm is triggered, some iterations of the following loop are started to determine the shadow prices of nodeBs.
1. the eNodeBs exchange current temporarily load information (TL) with their neighbours .

2. Each eNodeB derives from the received temporary loads of its neighbours an average load. It derives a normalized temporary price which is the deviation of its temporary load from the current average load it has computed,

3. A new selection of UEs - NodeB assignments is made taking into account the temporary prices and the mobile resource coefficients. These new assignments are communicated to the involved neighbours and modify the temporary loads of each eNodeB and the temporary load of its neighbours. Step 1 can thus be started again.
The loop comprises a couple of iterations.
If load balancing stops after one iteration (for example in “greedy” load balancing), it usually fails to solve the imbalance issue or may also result in oscillations in assignments of UEs to NodeBs(See Annex). Thus the loop is iterated a few times until it converges or the iteration maximum is reached.

The whole process should not exceed a few seconds or a dozen of iterations.
Once final prices are reached, the UEs are effectively handed off to the lowest price eNodeBs so as to balance the load across the network. This will result in capacity and coverage optimization.
At the same time, The Handover algorithms thresholds are dynamically updated/shifted by the appropriate hysteresis/offset to reflect the new assignments.

It is then not expected that another round of the load balancing algorithm takes place unless a significant variation of load is observed by the network as detected by the Load Balancing Heart Beat mechanism described here-below.
Load balancing Heart Beat mechanism:
Start: Once the hand-offs have been done according to the load balancing algorithm here-above described, the Heart Beat mechanism starts. It is both event and periodic triggered: it consists in applying step 1 and step 2 only of the algorithm above-described every Period seconds (see parameters section below) as long as the load is above a threshold (see also parameters section below).
End: The load balancing Heart Beat mechanism ends whenever step 2 shows that the load imbalance with the neighbourhood is above the threshold “Absolute Minimum Load Imbalance” (see parameters section), in which case a new round of the overall load balancing algorithm here-above described is started.

The Load Balancing Heart Beat mechanism can thus be controlled by the operator setting of the three configuration parameters mentioned in this paragraph (see also parameters section below in 2.4).

2.3 Features

Decentralized: The scheme is fully decentralized SON example: there is no need of a centralized entity to compute the loads and the average loads.

Frequency: the scheme is supposed to fight against local congestion situations. The overall Load Balancing algorithm is not supposed to be triggered upon low load variations but the timescale is thought in terms of minutes or larger. Only important and lasting load variations can trigger a new iteration.
Autonomous: a new iteration of the load balancing algorithm is triggered autonomously whenever necessary (sufficient traffic imbalances detected by the Heart Beat mechanism) and unpredictably as opposed to more predictable daily variations. This is a self-optimisation process.
2.4 Parameters

To invoke load balancing so that it can operate in the said time scales and autonomously, we propose to add the following measurements and metrics:

· Actual load parameter and their intermediate values resolution TBD

· Shadow price, resolution TBD
· Temporary prices, resolution TBD

· Mobile Resource Coefficient resolution TBD
A bare minimum of 4 bit resolution for Load, Shadow Price and Mobile Resource Coefficient is suggested.

Besides, the following operator set parameters are needed to control the Heart Beat mechanism:
· eNB Load Threshold above which the periodic load checking is started, resolution TBD

· Period between two checks when the periodic load checking is started, resolution in seconds,

· Absolute Minimum Load Imbalance threshold in comparison of neighbours, which ends the Heart Beat mechanism and triggers the load balancing algorithm, resolution TBD
Besides, the following operator set parameters can be used to control the load balancing algorithm:
· Maximum number of iterations for the loop, TBD

The setting of these parameters determines the trigger conditions and the general behaviour and performance of the Load Balancing algorithm. It is supposed to be fixed or updated seldomly. This fixed setting alleviates optimization tasks and doesn’t prevent the dynamicity of the adaptation to load imbalances obtained by the scheme.
This is to be compared to the permanent need to tune handover parameters settings and coefficients in a classical approach.

3 Conclusion

The load balancing scheme described represents a minimal set of parameters through which network self-optimization can be achieved by load-based handoff. Network UE assignment algorithms using only such quantities have been shown to converge and determine optimal NodeB-UE assignments (see Annex). In fact such convergence can be achieved in only a small number of iterations so that the impact on the computational resources of the network will be limited.

We propose to include the following use case description in the list of the use cases in section 6.21.5 of TR3.018:

The following text is one example of load balancing optimization.

Scenario description: Capacity/Coverage optimization through load balancing based on pricing of network critical resources
· Objective: Optimisation of UE-NodeBs assignments to cope with the unequal traffic load and fight local congestion.
· Scheduling: Periodic and event
· Input source (all input optional depending on algorithm):
· UE measurements on the signal strength of current cell and its neighbours

· Current cell load, based on eNodeB and/or UE measurements

· Cell load of neighbouring cells signalled through X2 (or other) interface

· Functionality: an algorithm decides to handoff some UEs based on pricing of network critical resources (shadow prices) and thus to balance autonomously the traffic load between cells.

· Actions:

· Inform peer eNodeBs of the new assignments via a few iterations of exchange of temporary loads and temporary prices of cells,
· Hand-off the UEs according to the final assignments (shadow prices) and reflect the new assignments via handover algorithm threshold hysteresis.
· Expected results: Self-adaptation to variation of cell load due to unpredictable traffic imbalance. Increased capacity of the system

· Minimized human intervention in network management and optimization tasks by a self-optimisation process which alleviates from handover parameters fine tuning.

ANNEX: Numerical Results
Description of the simulation Scenario
We consider a square coverage region of length 6.0 with 4 base stations and a population of 200 users;

The relative spatial user densities around the 4 base stations are (0.0625, 0.125, 0.125, 0.6875)

Base station 1 is located at position (1.0, 1.0)

Base station 2 is located at position (1.0, 5.0)

Base station 3 is located at position (5.0, 1.0)

Base station 4 is located at position (5.0, 5.0)

Description of the initial load Imbalances

Base station 1 serves users: 59, 60, 88,111,114,153,184,186,187,198,

Base station 2 serves users: 4, 5, 8, 20, 28, 38, 43, 45, 49, 50, 62, 63, 65, 67, 68, 69, 70, 81,103,104,105,109,113,117,121,133,138,140,144,145,149,159,164,166,179,183,185,192,194,199,

Base station 3 serves users: 6, 7, 12, 15, 21, 29, 30, 31, 51, 52, 53, 56, 64, 66, 79, 82, 83, 86, 87, 89, 94, 95, 98,124,127,132,134,135,157,162,169,170,171,172,173,191,195,196,200,

Base station 4 serves users: 1, 2, 3, 9, 10, 11, 13, 14, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 44, 46, 47, 48, 54, 55, 57, 58, 61, 71, 72, 73, 74, 75, 76, 77, 78, 80, 84, 85, 90, 91, 92, 93, 96, 97, 99,100,101,102,106,107,108,110,112,115,116,118,119,120,122,123,125,126,128,129,130,131,136,137,139,141,142,143,146,147,148,150,151,152,154,155,156,158,160,161,163,165,167,168,174,175,176,177,178,180,181,182,188,189,190,193,197,

The Initial Load vector is (20.919, 72.309, 60.616, 180.925)

Four algorithms schemes are compared: greedy A, B, C and the Dual Ascent.
Greedy A:
Greedy scheme A: if I am `overloaded' (load is more than 50% above

the average), then I transfer calls to the nearest neighbor that

have a path loss at the nearest neighbor that is at most 10% worse,

and provided that neighbor is not overloaded

Round 1

User 32 is reassigned from base station 4 to base station 2

User 58 is reassigned from base station 4 to base station 3

User 84 is reassigned from base station 4 to base station 3

User 125 is reassigned from base station 4 to base station 2
Subsequent Rounds

No change by subsequent rounds.

Final Load vector for greedy scheme A is (20.919, 84.721, 71.986, 158.219)

The imbalance remains.
Greedy B:
Greedy scheme B: if I am `overloaded' (load is more than 50% above

the average), then I transfer calls to the nearest neighbor that

have a path loss at the nearest neighbor that is at most 50% worse,

and provided that neighbor is not overloaded
Round 1

User 10 is reassigned from base station 4 to base station 2

User 17 is reassigned from base station 4 to base station 3

User 32 is reassigned from base station 4 to base station 2

User 58 is reassigned from base station 4 to base station 3

User 78 is reassigned from base station 4 to base station 2

User 84 is reassigned from base station 4 to base station 3

User 90 is reassigned from base station 4 to base station 2

User 106 is reassigned from base station 4 to base station 3

User 110 is reassigned from base station 4 to base station 2

User 119 is reassigned from base station 4 to base station 3

User 125 is reassigned from base station 4 to base station 2

User 137 is reassigned from base station 4 to base station 2

User 168 is reassigned from base station 4 to base station 2

User 175 is reassigned from base station 4 to base station 3

Subsequent Rounds

No change by subsequent rounds.

Final Load vector for greedy scheme B is (20.919, 119.622, 90.777, 114.856)

The imbalance happens to be removed by chance. (50% was the right value).
Greedy C:

Greedy scheme C: if I am `overloaded' (load is more than 50% above

the average), then I transfer calls to the nearest neighbor that

have a path loss at the nearest neighbor that is at most 100% worse,

and provided that neighbor is not overloaded

Round 1

23 users reassigned.
Subsequent Rounds

between 20 and 30 users reassigned at each subsequent round.

Oscillations of the load vectors between:
A First Load vector (35.085, 37.525, 60.616, 210.707)

And a Second Load vector (20.919, 144.705, 114.596, 85.592)

No convergence because 100% factor was too strong.
Dual Ascent:
Dual ascent scheme: iterative updates of the shadow prices

Iteration 1

Load vector is (30.834, 75.001, 79.849, 151.336)

Etc…low convergence.
Iteration 12

Load vector is (79.690, 90.462, 99.594, 98.691)

Convergence achieved at iteration 12.
The following graphs illustrate the results obtained by the different schemes.

[image: image5.emf]Dual Ascent

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Iterations for NodeBs 1-4

Loads

"Performance of different greedy load-balancing schemes and the proposed

“dual-ascent” scheme. As it can be seen, the greedy approaches (A, B, and C) either stop short of an appropriate balance (A-B) or oscillate (C). Dual ascent achieves a adequate balance in roughly 12 iterations."

[1] Self-Optimization use case: self-tuning of handover parameters
Orange, T-Mobile

[image: image1][image: image2.emf]Greedy A

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Iterations for NodeBs 1-4

Loads

[image: image3.emf]Greedy B

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Iterations for NodeBs 1-4

Loads

[image: image4.emf]Greedy C

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Iterations for NodeBs 1-4

Loads

