3GPP TSG RAN WG3 Meeting #39

R3-031640

San Diego, USA, 17th-21st November 2003
Agenda Item:
10.7.3
Source:
Lucent
Title:
Clarification on the Radio Interface Parameter Update procedure

Document for:
Discussion and Decision
1. Introduction

In TS 25.427 the Radio Interface Parameter Update procedure is defined. This procedure is used to update radio interface parameters which are applicable to all RL's for the concerning UE. Both synchronised and unsynchronised parameter updates are supported.

Due to the nature of the Synchronized Radio Link Reconfiguration procedure (it is an implementation issue on how often this procedure might take place in a real network), a problem arises when the RNC sends multiple RIPUs to the Node B. From standards point of view the Node B has to honour each of these RIPU requests but this can lead to some complexities which are perhaps unnecessary.

In the section below the problem is discussed in more detail.

2. Discussion
In R99, for a synchronous parameter update, the Node B shall apply the newly provided TPC PO from the indicated CFN [TS 25.427]. There is no restriction on when the Node B may receive this command and the Node B should remember it until the next occurrence of the specified CFN.

On the other hand, as the Node B behaviour in the case of receiving a second RIPU while waiting for the occurrence of the CFN for a previous one is not explicitly specified in the standard. Is the RNC is allowed to assume, that the Node B is able to “queue” each of these requests? Or should the RNC has to wait until the previous CFN is expired before issuing a new RIPU?

So as per the specifications it seems to be theoretically possible that the Node B could receive multiple requests to queue up. Since there was only one parameter in R99 the RNC is unlikely to issue another RIPU. But with Rel 5, there are several parameters (TPC Power Offset, DPC Mode, TFCI Power Offset, TFCI Power Offset for primary cell), and it is quite possible that RNC may update them one at a time. The specifications require the Node B to honour all RIPUs. That is, while there is no stated requirement to “queue” the RIPU in the Node B, there is a requirement to act on each RIPU irrespective of the time of arrival.

In order to explain the issue better, consider the following example scenario:

Let us first consider R99, where the RIPU has only TPC PO.

Imagine, TPC PO = 4 and the RNC sends a RIPU for CFN = 20 with TPC PO = 8.

Before CFN=20 is reached (e.g. at CFN =10), the RNC sends a RIPU without CFN with TPC PO = 6.

How shall the NodeB behave?

1) forget the pending RIPU and activate immediately the TPC PO = 6. Result: TPC PO = 6 from CFN = 10 on.

2) activate immediately TPC PO = 6 and when CFN = 20 is reached, execute the pending RIPU and activate TPC PO = 8. Result: TPC PO = 6 between CFN = 10 and 20 and TPC PO = 8 from CFN = 20 on.

A strict reading of the specifications would require the Node B to follow behaviour 2. But is that the intended behaviour?

[image: image1.wmf]

2

4

10

6

12

8

14

20

18

16

CFN

Node B

RIPU

(CFN = 20,

 TPC PO = 8)

RIPU

(TPC PO = 6)

TPC PO

value

TPC PO

6

TPC PO

6

Understanding 1

TPC PO

value

TPC PO

8

TPC PO

6

Understanding 2

In R5 it is more complex, as there are 4 radio parameters which can (but need not) be included in the RIPU.

We extend our example above a bit:

Consider the initial condition TPC PO = 4 and TFCI PO =4.

RNC sends a RIPU for CFN = 20 with TPC PO = 8 and TFCI PO = 8.

At CFN=10, the RNC sends a RIPU without CFN with TPC PO = 6.

There are several possibilities for the RNC behaviour:

1) forget the pending RIPU and activate immediately the TPC PO = 6. Result: TPC PO = 6 and TFCI PO = 4 from CFN = 10 on.

2) activate immediately TPC PO = 6 and the pending change for TFCI PO. Result: TPC PO = 6 and TFCI PO = 8 from CFN = 10 on.

3) activate immediately TPC PO = 6 and when CFN = 20 is reached, execute the pending RIPU and activate TPC PO = 8 and TFCI PO = 8. Result: between CFN = 10 and 20 TPC PO = 6 and TFCI PO =4, after CFN = 20 TPC PO = 8 and TFCI PO = 8.

4) activate immediately TPC PO = 6 and when CFN = 20 is reached, execute the pending RIPU and activate TFCI PO = 8. Result: from CFN = 10, TPC PO = 6 and TFCI PO = 4, after CFN = 20 TPC PO = 6 and TFCI PO = 8.

[image: image2.wmf]

2

4

10

6

12

8

14

20

18

16

Node B

CFN

RIPU

(CFN =

20,

 TPC PO = 8,

TFCI PO = 8))

TPC PO value

TPC PO

4

Under

-

standing 1

TFCI PO value

TFCI PO

4

RIPU

(TPC PO = 6)

TPC PO

6

TFCI PO

4

TPC PO value

TFCI PO value

TPC PO

4

TFCI PO

4

TPC PO

6

TFCI PO

8

Under

-

standing 2

TPC PO value

TFCI PO value

TPC PO

4

TFCI PO

4

TPC PO

6

TFCI PO

4

TPC PO

8

TFCI PO

8

Under

-

standing 3

TPC PO value

TFCI PO value

TPC PO

4

TFCI PO

4

TPC PO

6

TFCI PO

4

TPC PO

6

TFCI PO

8

Under

-

standing 4

3. Proposal

 Proposals on the way forward on specifying this issue:

Proposal 1) Leave it implementation specific in the Node B for multiple RIPUs updating the same parameter.

Proposal 2) Prohibit the RNC from sending another RIPU until the previous CFN is expired. So the Node B stores the new parameter until the next occurrence of the CFN and activates it then. No need to queue multiple requests.
Proposal 3) Node B should allow for multiple RIPU requests and should execute them strictly as per requests in order.
Proposal 4) While the Node B is waiting for a CFN to occur and if now another RIPU updating the same parameter (amongst others) is received, the parameter is updated based on the last RIPU received. This means, that a new RIPU cancels a pending RIPU for the same parameter, but not a pending RIPU for other parameters.
Proposal 5) While the Node B is waiting for a CFN to occur and if now another RIPU is received, the first one is discarded and the last one executed. This means, that that a new RIPU always cancels any pending RIPU.

4. Conclusion

Performing any queuing in the NodeB brings in complications without any clear benefits. Hence we believe that proposal 5 should be the intended behaviour of the Node B (that is understanding 1 in the examples above). Hence it is proposed to make it clear in the specs that receipt of an RIPU will override any other pending RIPUs in the NodeB. If this is the common understanding, Lucent is happy to provide the necessary CRs.

5. References

TS 25.427 v5.2.0: UTRAN Iub/Iur interface user plane protocol for DCH data streams

_1130081295.doc

Understanding 2

TPC PO

6

TPC PO

8

TPC PO value

Understanding 1

TPC PO

6

TPC PO

6

TPC PO value

RIPU

(TPC PO = 6)

RIPU

(CFN = 20,

 TPC PO = 8)

Node B

CFN

16

18

20

14

8

12

6

10

4

2

_1130082647.doc

Under-

standing 4

TFCI PO

8

TPC PO

6

TFCI PO

4

TPC PO

6

TFCI PO

4

TPC PO

4

TFCI PO value

TPC PO value

Under-

standing 3

TFCI PO

8

TPC PO

8

TFCI PO

4

TPC PO

6

TFCI PO

4

TPC PO

4

TFCI PO value

TPC PO value

Under-

standing 2

TFCI PO

8

TPC PO

6

TFCI PO

4

TPC PO

4

TFCI PO value

TPC PO value

TFCI PO

4

TPC PO

6

RIPU

(TPC PO = 6)

TFCI PO

4

TFCI PO value

Under-

standing 1

TPC PO

4

TPC PO value

RIPU

(CFN = 20,

 TPC PO = 8,

TFCI PO = 8))

CFN

Node B

16

18

20

14

8

12

6

10

4

2

