Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-RAN WG2 #85bis
Tdoc R2-141760
Valencia, Spain, 31st Mar - 4th Apr 2014
Agenda Item:
7.1.2
Source:
Ericsson
Title:
PDCP reordering in dual connectivity
Document for:
Discussion, Decision
1 Introduction
In RAN2#85 the discussion on PDCP in dual connectivity reached the following agreements:

Agreements
0
We do not support RLC UM bearers in split mode.

1
RLC UM like reordering scheme (with a t-Reordering timer) is used for PDCP layer reordering in case of split bearers.

2
From RAN2 point of view we do not want continuous PDCP status reporting from the UE to the MeNB.

FFS for other cases such as mobility/SeNB change/reconfiguration.

FFS whether the SeNB needs to inform the MeNB about successfully delivered (and/or pending) PDCP PDUs or whether it is sufficient to rely on e.g. a discard timer in the MeNB.

3
PDCP reordering after SeNB release if FFS.

4
PDCP reordering may only be configured for split bearers.

In this paper we discuss how an RLC-UM like reordering scheme in PDCP would like in detail. Further, we will analyse how the PDCP transmission buffer can be handled for downlink transmissions and how the reordering functionality should work in the UE after SCG removal.
2 Reordering in PDCP
Based on the agreements from RAN2#85 a reordering scheme similar to the RLC UM reordering scheme shall be supported by PDCP for split DRBs mapped on RLC AM.

In this scheme a reordering timer would be used, which is started if there is an SN gap between received PDU and previously consecutively delivered PDU. If the missing PDU is received within the reordering timer expiry time, it is delivered to upper layers along with all its consecutive PDUs (if any). In this case the reordering timer is reset (and restarted if there is another SN gap identified as described above). When the reordering timer expires, consecutive PDUs immediately after the missing PDU (if any) are delivered to upper layers.

In [2] a sound text proposal is given to achieve this envisaged behaviour. In the Annex we provide a further text proposal mainly in accordance to [2] but with some necessary minor modifications, see comments.
Proposal 1 Adopt the proposal of the PDCP reordering functionality as shown in the Annex of this document.
3 Feedback for PDCP buffer handling and flow control
3.1 Options for PDCP transmission buffer handling

In current systems the (re-)transmission buffers of downlink PDCP and RLC are handled by the eNB. As elaborated in [1] RLC SDUs may be removed from the buffer when acknowledged by UE. PDCP SDU can be removed from the buffer if corresponding RLC SDUs are acknowledged. This buffer handling, i.e. removal of acknowledged SDUs, is not specified but necessary to keep the buffer sizes and consequently the eNB memory requirements within reasonable bounds.

For split bearers in dual connectivity, two potential issues arise when it comes to transmission buffer management: first, acknowledgement of RLC SDUs happens in the SeNB while the MeNB handles the corresponding PDCP SDU buffer; second, in case of SeNB release, PDCP retransmissions from the MeNB of PDCP PDUs that were supposed to be transmitted by the SeNB need to take place, but the MeNB does not know if those were successfully received by the UE before.

In [1], two options to approach these issues were discussed. We list these approaches here again:
· Option A: MeNB does not keep PDCP SDUs handled by SeNB in the buffer. In this approach, when SeNB is released, it needs to forward back to MeNB those unacknowledged and un-transmitted PDCP SDUs. This is similar to current handover procedure. MeNB may also request UE to transmit PDCP Status Report so that retransmission can be optimized. The main issues of this approach are that X2 overhead is increased when SeNB is released, and there are additional delays to transmit those PDCP SDUs.
· Option B: MeNB keeps PDCP SDUs handled by SeNB in the buffer. In this approach, either SeNB or UE should inform MeNB about PDCP Status (the SNs for correctly received and missing PDCP SDUs) so that MeNB can remove from the buffer those PDCP SDUs which are correctly received by the UE. In this approach, when SeNB is released, SeNB does not need to forward back those unacknowledged and un-transmitted PDCP SDUs. The drawback is the increased buffer requirements in MeNB and increased signalling overhead in X2 or air interface (however signaling overhead might not be an issue if such signaling is piggybacked in the flow control signaling exchanged between MeNB and SeNB).
Additionally, another very simple approach based on a discard timer could be imagined as well:

· Option C: MeNB keeps PDCP SDUs handled by the SeNB in the buffer. Each SDU is associated with a discard timer in order to keep buffer size within reasonable bounds. At release of SeNB all of those SDUs may be retransmitted to the UE. The retransmission may be optimized based on PDCP Status reports, but in case the discard timer is chosen too small, some SDUs might be lost before.
It would appear that Option C solves the identified issues in a simple way; however, it becomes obvious that this solution based on a timer only, is quite sensitive to the timer configuration, e.g. too low value may lead to premature omission of SDUs while too large value may lead to excessive buffer sizes, i.e. memory requirements.

As specified in [3], the PDCP protocol expects from lower layers that successful delivery of acknowledged mode PDCP PDUs is indicated. In current systems, this indication is sent by RLC AM, which resides in the same node. As explained above, this indication would help optimizing the buffer handling, i.e. to remove successfully delivered PDCP SDUs from the buffer.

Observation 1 For transmission buffer optimization, PDCP expects an indication about successful delivery of PDCP PDUs from lower layers in acknowledged mode.

3.2 Flow control between MeNB and SeNB
For the split bearer option, flow control is required to control the fraction of the PDCP data to be forwarded to the SeNB via X2. Forwarding a statically determined fraction would not result in an efficient usage of SeNB resources, as it does not take into account the momentary available SeNB radio resources and X2 backhaul transmission resources (see also [4]).
Flow control should well balance the dataflow between the MeNB and the SeNB: too few data will under-utilise available resources and is therefore not efficient; too much data results in excessive queuing delay which would not only result in excessive end-to-end delay but also in expiry of the PDCP reordering timer (see section 2) and consequently in loss of data. Therefore, the goal is to ensure that data queues in SeNB can be kept at an appropriate size.

As the knowledge about instantaneous radio conditions, current queue fill state and QoS requirements of all its UEs and radio bearers is available at the SeNB, it will be the SeNB’s task to give feedback to the MeNB on how much data it could handle at most without getting too large queues. Since different bearers are associated with different QoS requirements and applications, this information should be provided individually per bearer. The details of the algorithm determining the desired queue size can be left to eNB implementation.
Observation 2 Flow control is required to balance the dataflow between MeNB and SeNB for split bearers. It is the SeNB’s task to give feedback to the MeNB on how much data it could handle for the split bearer.

There are different ways to realize a flow control protocol. One way is that the SeNB indicates a preferred data rate to the MeNB. This approach was chosen for UTRAN on the Iub interface for HSDPA. However, a problem arises when the X2 interface becomes temporarily the bottleneck. The SeNB notices that its queue is running low and it recommends the MeNB to increase its data rate. Such an increase will overload the X2 even further and is therefore undesirable.

Observation 3 Rate based flow control balances the transmission rate based on requested rate of the receiver (SeNB), which does not consider a temporary bottleneck on X2.

Furthermore, the SeNB actually does not primarily care about the data rate on X2 but rather aims for a decent queue size and even more for a queuing delay below the packet delay budget negotiated for the bearer. Therefore, it not only needs to take into account the rate available on the radio interface but also the amount of data it has already in its queue.

Therefore, one should consider a window based flow control mechanism similarly to what TCP uses. TCP is not rate based but rather window based. That means, the TCP sender does not send at a constant rate but rather controls the amount of data that is “in flight”, i.e. transmitted but not yet acknowledged. In the context of downlink dual connectivity, the MeNB would be the sender and the SeNB the receiver. Based on current queue state in the MeNB together with the feedback about queue state in the SeNB, the MeNB is able to adjust the transmission window which considers both SeNB rate and X2 backhaul delay.

Observation 4 Window based flow control balances the transmission window based on sender (MeNB) queue state as well as receiver (SeNB) queue state thus considering both X2 backhaul delay and receiver (SeNB) radio interface rate.

The following Figure 1 illustrates window based flow control between MeNB and SeNB as well as related queue states.

[image: image1]
Figure 1: Window based flow control overview.
In Figure 1 the flow control entity in the SeNB keeps track of the following states: lower window edge L’, which is the first not yet acknowledged data unit in the transmission buffer, higher window edge H’, which is the last data unit in the buffer, and desired further data estimate D’. The SeNB may determine D’ itself e.g. based on averaged data rate on the radio interface and estimated RTT on the X2 interface.
Within the flow control feedback the SeNB informs the MeNB then about its current values of L’ and D’. The MeNB keeps also track of those values, L and D, and further knows how much data units it had already sent, which is denoted as S in the figure. Based on all these values the MeNB knows how much data is already “in flight” from its own point of view, which is data currently on the backhaul as well as unacknowledged data in the buffer of the SeNB. Thus, the MeNB can determine how much more data needs to be brought “in flight” to satisfy the SeNB request.
Observation 5 Window based flow control builds on the following feedback from SeNB to MeNB: lower transmission buffer edge, as well as new desired amount of data.
Unlike a rate based flow control command, such a window based scheme allows the MeNB to adjust quickly to any kind of congestion no matter whether it occurs in the SeNB or on X2. Furthermore, there are synergies between window based flow control feedback and feedback needed for PDCP buffer handling, as explained in the next section.
This flow control mechanism would require a feedback periodicity in the order of 10ms which can be regarded as minor in addition to the ongoing data transmission. If there is no data transmission, also no feedback is required, so that no unnecessary overhead is generated.

The values of L and L’ can be given e.g. as absolute PDCP SNs. D and D’ can relate to an absolute amount of data or a delta to L or L’, but should relate to byte or byte SNs instead of data units, since PDCP PDUs may differ in size.

H’ does not necessarily need to be known in the MeNB. It may be helpful however in addition to reporting L’ and D’ for the MeNB to determine whether the congestion is due to X2 or SeNB radio interface.

3.3 Utilization of common feedback from SeNB

Due to the need for flow control in the dual connectivity split bearer architecture, for the PDCP buffer handling, Option B as described in section 3.1 seems to be preferably, since for both flow control and PDCP buffer handling, feedback is expected from the SeNB.
As explained above, PDCP expects an indication of successful delivery of PDUs from lower layer in acknowledged mode. In dual connectivity this requirement should be extended to cover also the secondary lower layer entity of the PDCP in the SeNB. This is shown in Figure 2.

[image: image2]
Figure 2: Split bearer architecture in DL with flow control.
In Figure 2, it becomes obvious that the indication of successful delivery of PDCP PDUs in the SeNB originates from RLC and is given to the flow control protocol for forwarding. From PDCP point of view, it can be formulated as a requirement that the lower layer flow control provides the required feedback about successful delivery of PDCP PDUs.
Observation 6 For PDCP buffer handling it is required that the flow control protocol provides indications about successful delivery of PDUs sent via the SeNB to the UE.
As stated for Option B, the required PDCP feedback may thus be included in the flow control feedback. In fact, assuming that window based flow control is used and that it is based on PDCP SNs, the required PDCP feedback is basically represented by the lower window edge L’ from Figure 1. All SNs below L’ are acknowledged as delivered by RLC ACK in the SeNB. Eventually the flow control entity in the MeNB could indicate those PDUs below L to PDCP as acknowledged.

Observation 7 Window based flow control feedback (lower window edge and desired window size) may be reused for PDCP buffer handling.

So, in conclusion, window based flow control may not only be preferred from a performance point of view, but also since it provides a good basis for PDCP buffer handling in terms of reuse of the flow control feedback.
Proposal 2 Adopt a window based flow control mechanism for controlling the queue size in the SeNB as well as for buffer management in the MeNB.

In RAN2 we should discuss further the detailed requirements of such a flow control mechanism, especially the required feedback between MeNB and SeNB. As an X2 protocol, the actual implementation of the protocol shall be handled in RAN3.

Proposal 3 RAN2 discusses requirements of flow control mechanism while RAN3 discusses implementation of the protocol.

Furthermore, as an alternative option to handle PDCP feedback from SeNB to MeNB the utilization of PDCP status reports was proposed. This approach would however require that partial PDCP functionality is present in the SeNB, which does not appear to be a clean approach from a protocol design point of view and is thus neglected in this contribution.
Another advantage of PDCP buffer handling Option B is obviously that it is more dynamic in terms of SeNB activation and release, since no forwarding of data is needed at SeNB release. Considering a typical scenario where SCGs are likely to be deployed with higher frequencies or provide only small coverage areas, being able to handle SeNB release more dynamically may be preferred.
4 Reordering after SCG removal

As analysed in [1] there is a need to continue PDCP reordering functionality even after SeNB removal, i.e. in case split bearer becomes a MCG bearer. This is because in this case some PDUs which were originally planned to be sent via the SeNB to the UE could not be sent due to the removal while PDUs with higher SN could be successfully received by the UE via the MeNB.

Observation 8 Indeed, PDCP reordering needs to continue after SeNB removal to account for missing PDUs from the SeNB which are to be retransmitted by the MeNB.
Obviously one way to solve this issue is to always enable the reordering functionality in PDCP, even for non-split bearers. This should however be avoided to allow legacy AQM mechanisms (e.g. PDCP PDU discard in DL) to work as intended for non-split bearers, i.e. a discarded PDU leads to immediate out-of-sequence delivery in the receiver. Besides, it was already agreed (agreement 4 above) that reordering functionality should not be configured for non-split bearers.

In principle, the MeNB could re-order packets mapped to the MCG and SCG queues before (re)transmitting the PDUs to the UE after the SCG release. Then the UE would refill SN gaps similar to current PDCP reordering after re-establishment. The MeNB may continue directly from the smallest unacknowledged SN, but this can lead to unnecessary retransmissions. Alternatively, the MeNB would need to wait for feedback from the SeNB or optionally for a PDCP status report from the UE before continuing, but this would lead to data interruption. However, these solutions would require that the UE should re-establish both MCG and SCG RLC buffers. Otherwise there is a risk that pending out-of-order PDCP PDUs are received by the UE after receiving the release command on RRC level. By continuing the usage of the reordering timer even after SeNB removal, re-establishment of MCG RLC is not necessary.

However, just continuing one running reordering timer in the UE and disabling the reordering functionality afterwards does not solve the issue completely, since further PDUs might be missing for which the reordering timer needs to be started again. The reordering functionality will be eventually stopped as illustrated in Figure 3 and described below.

[image: image3]
Figure 3: PDCP reordering at SeNB removal.

Figure 3 shows how PDUs 1, 3, 5 are transmitted to the UE and acknowledged so that they can be removed from the MeNB PDU buffer. PDUs 2, 4 are sent via the backhaul to the SeNB for transmission to the UE. However, the SeNB is released in the meantime so that these PDUs cannot be transmitted from the SeNB. As discussed in Section 3, it is assumed that these PDUs are still present in the MeNB buffer. After the SeNB release, these PDUs will need to be transmitted to the UE from the MeNB.
The UE started the reordering timer when receiving PDCP PDU with SN3, which is received out-of-sequence before PDU 2. The running reordering timer is not stopped when the SeNB is released (e.g. when UE SeNB RLC re-establishes). After the SeNB release, the MeNB may continue to transmitting pending PDUs from the MeNB buffer (e.g. SN 6, 7) as well as retransmit PDU 2 based on the flow control reports received from the SeNB (see section 3). Since PDU 4 is still missing the UE should restart the reordering timer even though SeNB was released already. After receiving PDU 4 (or when the reordering timer expires for this last missing PDU) the UE should stop using the reordering functionality. In other words, it does not restart the reordering timer once the lower PDCP window edge exceeds the highest SN received before SeNB release (PDU 5 in the example above). At this point the UE can be sure that no more out-of-sequence PDUs will follow.
Proposal 4 PDCP reordering functionality continues after SeNB removal.
Proposal 5 The UE stops the reordering functionality once the lower PDCP window edge exceeds the highest SN received before SeNB release.

Stopping the reordering functionality when all missing PDUs are received from before the SeNB removal seems to be a natural approach since after SeNB removal no out of sequence data is expected anymore, since the UE is now in single connectivity and retransmissions and reordering is taken care of by RLC AM.
5 Conclusion

In this paper we analysed how PDCP reordering issues can be handled in dual connectivity with respect to usage of a reordering timer for PDCP in acknowledged mode, how buffer handling for downlink transmission could be organized and how the issue with continued reordering functionality after SeNB could be solved. We summarize our proposals as follows:
Proposal 1
Adopt the proposal of the PDCP reordering functionality as shown in the Annex of this document.
Proposal 2
Adopt a window based flow control mechanism for controlling the queue size in the SeNB as well as for buffer management in the MeNB.
Proposal 3
RAN2 discusses requirements of flow control mechanism while RAN3 discusses implementation of the protocol.
Proposal 4
PDCP reordering functionality continues after SeNB removal.
Proposal 5
The UE stops the reordering functionality once the lower PDCP window edge exceeds the highest SN received before SeNB release.

6 References

[1] R2-140269, PDCP reordering for option 3C in dual connectivity, Intel Corp., RAN2#85, Prague, Czech Republic, 10 – 14 Feb 2014

[2] R2-140407, Assumptions to base reordering at PDCP, NSN, Nokia Corp., RAN2#85, Prague, Czech Republic, 10 – 14 Feb 2014
[3] TS 36.323, Packet Data Convergence Protocol (PDCP) specification, 3GPP

[4] R3-140819, Flow control for split bearer option, RAN3#83bis, San Jose del Cabo, Mexico, 31 Mar - 4 Apr 2014

7 Annex

7.1 Text proposal to include reordering timer in PDCP
We adopted the change to PDCP [3] proposed in [2]. In addition we applied some further changes. All changes to the original PDCP specification [3] are highlighted in red.

Our major change as compared to [2] relates to stopping the reordering timer and not starting the reordering timer at reestablishment of all lower layers in order to keep the legacy behaviour. In this case the missing PDU will be eventually received after the reestablishment procedure. Moreover, to keep the legacy functionality in case of timer value configured to 0ms, we changed the invocation order of setting Reordering_PDCP_RX_SN and starting the reorderingTimer. The new variable Reordering_PDCP_RX_SN corresponds to VRX_PDCP_RX_SN in [2].
[…]
5.1.2.1.2
Procedures for DRBs mapped on RLC AM
For DRBs mapped on RLC AM, at reception of a PDCP Data PDU from lower layers, the UE shall:
-
if received PDCP SN – Last_Submitted_PDCP_RX_SN > Reordering_Window or 0 <= Last_Submitted_PDCP_RX_SN – received PDCP SN < Reordering_Window:

-
if received PDCP SN > Next_PDCP_RX_SN:

-
decipher the PDCP PDU as specified in the subclause 5.6, using COUNT based on RX_HFN - 1 and the received PDCP SN;

-
else:
-
decipher the PDCP PDU as specified in the subclause 5.6, using COUNT based on RX_HFN and the received PDCP SN;

-
perform header decompression (if configured) as specified in the subclause 5.5.5;

-
discard this PDCP SDU;

-
else if Next_PDCP_RX_SN – received PDCP SN > Reordering_Window:

-
increment RX_HFN by one;

-
use COUNT based on RX_HFN and the received PDCP SN for deciphering the PDCP PDU;

-
set Next_PDCP_RX_SN to the received PDCP SN + 1;

-
else if received PDCP SN – Next_PDCP_RX_SN >= Reordering_Window:

-
use COUNT based on RX_HFN – 1 and the received PDCP SN for deciphering the PDCP PDU;

-
else if received PDCP SN >= Next_PDCP_RX_SN:

-
use COUNT based on RX_HFN and the received PDCP SN for deciphering the PDCP PDU;

-
set Next_PDCP_RX_SN to the received PDCP SN + 1;

-
if Next_PDCP_RX_SN is larger than Maximum_PDCP_SN:

-
set Next_PDCP_RX_SN to 0;

-
increment RX_HFN by one;

-
else if received PDCP SN < Next_PDCP_RX_SN:

-
use COUNT based on RX_HFN and the received PDCP SN for deciphering the PDCP PDU;

-
if the PDCP PDU has not been discarded in the above:
-
perform deciphering and header decompression (if configured) for the PDCP PDU as specified in the subclauses 5.6 and 5.5.5, respectively;
-
if a PDCP SDU with the same PDCP SN is stored:

-
discard this PDCP SDU;

-
else:

-
store the PDCP SDU;

 -
if the PDCP PDU received by PDCP is not due to the re-establishment of lower layers:

-
deliver to upper layers in ascending order of the associated COUNT value:

-
all stored PDCP SDU(s) with an associated COUNT value less than the COUNT value associated with the received PDCP SDU;

-
all stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from the COUNT value associated with the received PDCP SDU;
-
set Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers;.
-
else if received PDCP SN = Last_Submitted_PDCP_RX_SN + 1 or received PDCP SN = Last_Submitted_PDCP_RX_SN – Maximum_PDCP_SN:

-
deliver to upper layers in ascending order of the associated COUNT value:

-
all stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from the COUNT value associated with the received PDCP SDU;
-
set Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers.
- if PDCP PDU received by PDCP is due to the re-establishment of all lower layers
- stop and reset reorderingTimer;

-
else:
-
if reorderingTimer is running:

-
if Reordering_PDCP_RX_SN = Last_Submitted_PDCP_RX_SN + 1 or
Reordering_PDCP_RX_SN = Last_Submitted_PDCP_RX_SN – Maximum_PDCP_SN or
Reordering_PDCP_RX_SN – Last_Submitted_PDCP_RX_SN > Reordering_Window or
0 <= Last_Submitted_PDCP_RX_SN – Reordering_PDCP_RX_SN < Reordering_Window:

- stop and reset reorderingTimer;

- if reorderingTimer is not running (includes the case when reorderingTimer is stopped due to actions above):

-
if Next_PDCP_RX_SN – Last_Submitted_PDCP_RX_SN > 1 or
0 < Last_Submitted_PDCP_RX_SN – Next_PDCP_RX_SN < Maximum_PDCP_SN:

-
set Reordering_PDCP_RX_SN to Next_PDCP_RX_SN;

-
set Reordering_PDCP_RX_HFN to RX_HFN.

-
start reorderingTimer;

Note: For reorderingTimer duration of 0ms the actions when reordering timer expires specified in section 5.1.2.1.2b1 shall be executed immediately.
[….]

5.1.2.1.2b.1
Actions when reorderingTimer expires
When reorderingTimer expires, the UE shall:
- deliver to upper layers in ascending order of the associated COUNT value:

-
all stored PDCP SDU(s) with an associated COUNT value less than the COUNT value {Reordering_PDCP_RX_HFN, Reordering_PDCP_RX_SN};

-
all possibly stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from the COUNT value {Reordering_PDCP_RX_HFN, Reordering_PDCP_RX_SN};

- set Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers.
-
if Next_PDCP_RX_SN – Last_Submitted_PDCP_RX_SN > 1 or
0 < Last_Submitted_PDCP_RX_SN – Next_PDCP_RX_SN < Maximum_PDCP_SN:
-
set Reordering_PDCP_RX_SN to Next_PDCP_RX_SN;

-
set Reordering_PDCP_RX_HFN to RX_HFN.

-
start reorderingTimer;

7
Variables, constants and timers

7.1
State variables
This sub clause describes the state variables used in PDCP entities in order to specify the PDCP protocol.
All state variables are non-negative integers.
The transmitting side of each PDCP entity shall maintain the following state variables:

a)
Next_PDCP_TX_SN

The variable Next_PDCP_TX_SN indicates the PDCP SN of the next PDCP SDU for a given PDCP entity. At establishment of the PDCP entity, the UE shall set Next_PDCP_TX_SN to 0.

b)
TX_HFN

The variable TX_HFN indicates the HFN value for the generation of the COUNT value used for PDCP PDUs for a given PDCP entity. At establishment of the PDCP entity, the UE shall set TX_HFN to 0.

The receiving side of each PDCP entity shall maintain the following state variables:

c)
Next_PDCP_RX_SN

The variable Next_PDCP_RX_SN indicates the next expected PDCP SN by the receiver for a given PDCP entity. At establishment of the PDCP entity, the UE shall set Next_PDCP_RX_SN to 0.

d)
RX_HFN

The variable RX_HFN indicates the HFN value for the generation of the COUNT value used for the received PDCP PDUs for a given PDCP entity. At establishment of the PDCP entity, the UE shall set RX_HFN to 0.

e)
Last_Submitted_PDCP_RX_SN

For PDCP entities for DRBs mapped on RLC AM the variable Last_Submitted_PDCP_RX_SN indicates the SN of the last PDCP SDU delivered to the upper layers. At establishment of the PDCP entity, the UE shall set Last_Submitted_PDCP_RX_SN to Maximum_PDCP_SN.
f)
Reordering_PDCP_RX_SN
For PDCP entities for DRBs mapped on two RLC entities the variable Reordering_PDCP_RX_SN indicates the PDCP SN following the PDCP SN of the PDCP Data PDU which triggered reorderingTimer.
g)
Reordering_PDCP_RX_HFN
For PDCP entities for DRBs mapped on two RLC entities the variable Reordering_PDCP_RX_HFN indicates the HFN value of the COUNT value following the COUNT value associated with the PDCP Data PDU which triggered reorderingTimer.
7.2
Timers

The transmitting side of each PDCP entity for DRBs shall maintain the following timers:

a) discardTimer
The duration of the timer is configured by upper layers [3]. In the transmitter, a new timer is started upon reception of an SDU from upper layer.
The receiving side of each PDCP entity for DRBs mapped on two RLC entities shall maintain the following timers:

b) reorderingTimer
The duration of the timer is configured by upper layers. This timer is used to detect loss of PDCP PDUs (see sub clauses 5.1.2.1.2b and 5.1.2.1.3b). If reorderingTimer is running, reorderingTimer shall not be started additionally, i.e. only one reorderingTimer per PDCP entity is running at a given time.

7.3
Constants

a) Reordering_Window

Indicates the size of the reordering window. The size equals to 2048 when a 12 bit SN length is used, or 16384 when a 15 bit SN length is used, i.e. half of the PDCP SN space, for radio bearers that are mapped on one RLC AM or on two RLC AM entities.

b) Maximum_PDCP_SN is:

-
32767 if the PDCP entity is configured for the use of 15 bits SNs

-
4095 if the PDCP entity is configured for the use of 12 bit SNs

-
127 if the PDCP entity is configured for the use of 7 bit SNs

-
31 if the PDCP entity is configured for the use of 5 bit SNs

1/11

[image: image4.png]Previous data
“in flight on X2
and in SeNB”

Flow control data
e E— ‘ _—>
Data after current feedback Previous data “in flight on X2”

CurrentL’and D’

Flow control feedback

Previous data
“in flight in SeNB”

[image: image5.png]PDCP
T
! Flow control
: A
RLC RLC
MAC MAC
MeNB SeNB

<——PDCP PDU

_ _ _Indication of successful
delivery of PDCP PDU

[image: image6.png]SeNB

MeNB UE

SeNBrelease - -

S

t-Reordering
start because 2 missing

SeNB release does not stop
t-Reordering functionality

t-Reordering
start because 4 still missing

t-Reordering functionality
stopped when all missing PDUs
received after SeNB release

