3GPP TSG-RAN WG2 Meeting #60bis
R2-080548
14th – 18th January 2008

Sevilla, Spain
Agenda item:

5.1.2.6
Source:
ASUSTeK

Title:
Reordering window for ARQ

Document for:

Discussion and Decision

1
Introduction

In LTE, it is a working assumption that there is no re-ordering function based on TSN used for HARQ in the MAC layer. This document analyses the functions needed for ARQ in RLC entity and a proposal is presented to fulfil the required functions for ARQ. This document is based on R2-075131 with slight modification plus text proposal for TS 36.322.

2
Function requirements for ARQ

The ARQ procedure in AM RLC layer needs to provide at least the following functions listed in stage-2 spec [36.300]:

-

Transfer of AMD PDUs;

-

In-sequence delivery of SDUs except at HO in the uplink;

-

Duplicate Detection.
In addition, more functions are expected to be achieved by ARQ procedure:

· Detection of missing AMD PDUs at lower layer;

· Retransmission of missing AMD PDUs.

2.1 Receiving window types

There are two types of receiving window used in UTRA. The first one is the receiving window used in AM RLC entity, wherein the receiving window is advanced when PDU of the lower window edge is received and PDUs received outside the receiving window are discarded. We can name the first type of receiving window as “Push type window” since the advance of the window is pushed from the lower edge.

The second type is the receiving window used in MAC for re-ordering based on TSN used in HARQ. This type of window is advanced when a PDU outside the window, i.e. above the upper window edge, is received. Therefore, the second type of receiving window can be named as “Pull type window” since the advance of the window is pulled from the upper edge.

Both the Push type window and the Pull type window can support the first three function requirements for ARQ. Considering out-of-order reception characteristics of HARQ in the lower layer, Pull type window can detect missing AMD PDUs but cannot handle retransmission of missing AMD PDUs properly. On the contrary, Push type window can handle retransmission of missing AMD PDUs properly but cannot detect missing AMD PDUs properly.

A straightforward way has been proposed for RLC in LTE: using Push type window to handle retransmission of missing AMD PDUs and using a discard timer to detect missing AMD PDUs. This scheme can work of course. However, since the discard timer must support maximum transmission times of a MAC PDU in HARQ, the discard timer must be configured to cover the worst scenario. This makes the detection time by a discard timer much slower than by a Pull type window. This is the reason why Pull type window is used in reordering entity in Rel-7 and in UM entity in LTE.

2.2 Dual window operation

In Rel-7, Push type window is based on RLC SN while Pull type window is based on HARQ TSN. And the space of RLC SN is much larger than the space of TSN. In LTE, there is no TSN for HARQ. However, noting that the sizes for Push type window (the Receiving window) and Pull type window (the reordering window) are different, we can use both types of window at the same time in a RLC entity. This scheme is called as Dual window operation. Figure 1 shows how the dual window scheme operates. The reordering window in Figure 1 reuses the style of the reordering queue used in MAC for HSDPA.

	
	
	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	

(a) Initial states of the two windows

	
	
	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	

(b) Window positions after receiving some PDUs. SN =1 is detected as missing and NACKed. SN = 3 and 5 might be under transmission in HARQ so that they are not NACKed yet.

	
	
	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	

(c) SN = 3 is detected as missing and NACKed.
Figure 1. Dual window operation

The reordering window in Figure 2 adopts the style of UM reordering window used in current TS 36.322. This style has an advantage that the lower edge of the reordering window is always inside the receiving window. The outcomes of Figures 1 and 2 are same to each other although the positions of the reordering windows seem to be different. Also, one can see from Figure 2 that the STATUS transmission window is always below the reordering window. Intuitively, this is easier to understand the physical sense of HARQ reordering

	
	
	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	

(a) Initial states of the two windows

	
	
	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	

(b) Window positions after receiving some PDUs. SN =1 is detected as missing and NACKed. SN = 3 and 5 might be under transmission in HARQ so that they are not NACKed yet.

[VR(R) = 1, VR(MS1) = 3, VR(RH) = 7]

	
	
	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	

(c) SN = 3 is detected as missing and NACKed.
[VR(R) = 3, VR(MS1) = 9, VR(RH) = 13]

Figure 2. Dual window operation

Note that, in Figures 1(b) and 2(b), if SN = 1 is received later, reordering window shall not be advanced because SN =1 is within the receiving window and is below the lower edge of the reordering window. Note one more thing: when SN of a received PDU is outside the receiving window, the PDU shall be discarded and the reordering window is not advanced. All the other operating rules for receiving window and reordering window apply for the dual window operation.

3.
Conclusions

A simple dual window operation has been presented. Reordering window for UM can be used for AM as well. This scheme can efficiently detect missing AMD PDUs comparing with scheme with T_reordering only. It is proposed to discuss this scheme and decide whether it is agreeable to adopt the dual window operation in the stage 3 specification. Text proposal for 36.322 of this scheme given below is based on Figure 2.

4. Text Proposal

5.1.3
AM data transfer

5.1.3.1
Transmit operations

5.1.3.1.1
General

The transmitting side of an AM RLC entity shall maintain a transmitting window according to state variables VT(A) and VT(MS) as follows:

· a SN falls within the transmitting window if VT(A) <= SN < VT(MS);

· a SN falls outside of the transmitting window otherwise.

The transmitting side of an AM RLC entity shall maintain a STATUS receiving window according to state variables VT(A) and VT(S) as follows:

· a SN falls within the STATUS receiving window if VT(A) <= SN < VT(S);

· a SN falls outside of the STATUS receiving window otherwise.

The transmitting side of an AM RLC entity shall not deliver to MAC any RLC data PDU whose SN falls outside of the transmitting window.

When delivering a new AMD PDU to MAC, the transmitting side of an AM RLC entity shall:

· set the SN of the AMD PDU to VT(S), and then increment VT(S) by one.

The transmitting side of an AM RLC entity can receive a positive acknowledgement (confirmation of successful reception by its peer AM RLC entity) for a RLC data PDU by the following:

· STATUS PDU from its peer AM RLC entity.

When receiving a positive acknowledgement for an AMD PDU with SN = VT(A), the transmitting side of an AM RLC entity shall:
· if positive acknowledgements have been received for all other AMD PDUs whose SN fall within the STATUS receiving window, set VT(A) equal to VT(S);

· otherwise, set VT(A) equal to the SN of the AMD PDU, which carries the oldest Data field element, whose SN falls within the STATUS receiving window and for which a positive acknowledgment has not been received yet.

5.1.3.2
Receive operations

5.1.3.2.1
General

The receiving side of an AM RLC entity shall maintain a receiving window according to state variables VR(R) and VR(MR) as follows:

· a SN falls within the receiving window if VR(R) <= SN < VR(MR);

· a SN falls outside of the receiving window otherwise.

The receiving side of an AM RLC entity shall maintain a reordering window according to state variables VR(MS) and VR(MO) as follows:

· a SN falls within the reordering window if VR(MS1) <= SN < VR(RH);

· a SN falls outside of the reordering window otherwise.

The receiving side of an AM RLC entity shall maintain a STATUS transmitting window according to state variables VR(R) and VR(MS) as follows:

· a SN falls within the STATUS transmitting window if VR(R) <= SN < VR(MS1);

· a SN falls outside of the STATUS transmitting window otherwise.

When receiving a RLC data PDU from lower layer, the receiving side of an AM RLC entity shall:

· either discard the received RLC data PDU or place it in the reception buffer (see sub clause 5.1.3.2.2);

· if the received RLC data PDU was placed in the reception buffer:

· advance the receiving window (i.e. update VR(R) and VR(MR)) and update VR(R-SO) as needed (see sub clause 5.1.3.2.3);

· advance the STATUS transmitting window (i.e. update VR(MS)) and the reordering window as needed (see sub clause 5.1.3.2.4);

· start/stop T_reordering and update VR(X) and VR(X-SO) as needed (see sub clause 5.1.3.2.5).

When T_reordering expires, the receiving side of an AM RLC entity shall:

· advance the STATUS transmitting window (i.e. update VR(MS)) as needed (see sub clause 5.1.3.2.4);

· start T_reordering if needed and update VR(X) and VR(X-SO) as needed (see sub clause 5.1.3.2.5).

Whenever possible, the receiving side of an AM RLC entity shall:

· reassemble RLC SDUs from any byte segments of AMD PDUs with SN < VR(R) and byte segments numbers 0 to VR(R-SO) – 1 of the AMD PDU with SN = VR(R), remove RLC headers when doing so and deliver the reassembled RLC SDUs to PDCP.

5.1.3.2.2
Discarding of received RLC data PDU

When a RLC data PDU is received from lower layer, where the RLC data PDU contains byte segment numbers y to z of an AMD PDU with SN = x, the receiving side of an AM RLC entity shall:

· if x falls outside of the receiving window; or

· if byte segment numbers y to z of the AMD PDU with SN = x have been received before:

· discard the received RLC data PDU;

· otherwise:

· place the received RLC data PDU in the reception buffer;

· if some byte segments of the AMD PDU contained in the RLC data PDU have been received before:

· discard the duplicate byte segments.

5.1.3.2.3
Advancing the receiving window and updating VR(R-SO)

When a RLC data PDU is placed in the reception buffer, the receiving side of an AM RLC entity shall:

· if all byte segments of the AMD PDU with SN = VR(R) are received:

· update VR(R) to the SN of the first not (completely) received AMD PDU with SN > current VR(R).

The receiving side of an AM RLC entity shall:

· always set VR(MR) to VR(R) + AM_Window_Size;

· always set VR(R-SO) to the byte segment number of the first not received byte segment of the AMD PDU with SN = VR(R).
5.1.3.2.4
Advancing the STATUS transmitting window and the reordering window
When an AMD PDU with SN = x is placed in the reception buffer, the receiving side of an AM RLC entity shall:
· -
if x > VR(RH):
-
update VR(MS1) to the SN of the first not received AMD PDU with SN > VR(RH) – AM_Reordering_Window_Size;
-
if x = VR(MS1);

-
update VR(MS1) to the SN of the first not received AMD PDU with SN > current VR(MS);
· if any byte segment of the AMD PDU with SN = VR(MS) is received; and
· if any byte segment of the AMD PDU with SN = VR(MS) + 1 is received:

· update VR(MS) to the SN of the first AMD PDU with SN > current VR(MS), for which no byte segments are received.
When T_reordering expires, the receiving side of an AM RLC entity shall:

· update VR(MS) to VR(X).
The receiving side of an AM RLC entity shall:

· always set VR(RH) as specified in sub clause 7.1.2.
NOTE:
The expiry of T_reordering triggers both VR(MS) and VR(X) to be updated, but VR(MS) shall be updated before VR(X).
5.1.3.2.5
Starting/stopping T_reordering and updating VR(X) and VR(X-SO)

When a RLC data PDU is placed in the reception buffer, where the RLC data PDU contains byte segment numbers y to z of an AMD PDU with SN = x, after any necessary advancing of the receiving window and the reordering window, the receiving side of an AM RLC entity shall:

· if T_reordering is not running:

· if x falls within the reordering window, unless x = VR(MS1) and z < VR(R-SO):

· start T_reordering;

· otherwise (i.e. if T_reordering is running):

· if VR(X) falls outside of the reordering window; or

· if VR(X) = VR(R) and byte segment numbers 0 to VR(X-SO) of the AMD PDU with SN = VR(X) are received:

· stop and reset T_reordering;

· if the SN of any received RLC data PDU > VR(MS1); or /* comment: if there are one or more gaps in the reordering window. */
· if VR(X) = VR(R) and the byte segment number of any received byte segment of the AMD PDU with SN = VR(X) > VR(X-SO):

· start T_reordering;

· otherwise:

· update VR(X) and VR(X-SO) to NULL.
When T_reordering expires, the receiving side of an AM RLC entity shall:

· if the SN of any received RLC data PDU > VR(MS1); or /* Comment: if there are one or more gaps in the reordering window. */
· if the byte segment number of any received byte segment of the AMD PDU with SN = VR(X) > VR(X-SO):

· start T_reordering;

· otherwise:

· update VR(X) and VR(X-SO) to NULL.

When starting T_reordering, the receiving side of an AM RLC entity shall:

· update VR(X) to the SN of the RLC data PDU with the highest SN among received RLC data PDUs.

While T_reordering is running, the receiving side of an AM RLC entity shall:

· when a RLC data PDU is placed in the reception buffer; or

· when VR(X) is updated:

· if all byte segments of the AMD PDU with SN = VR(X) from byte segment number VR(X-SO) to the last byte segment are received; and

· if the first byte segment of the AMD PDU with SN = VR(X) + 1 is received:

· update VR(X) to current VR(X) + 1;

· when VR(X) is not NULL:
· always set VR(X-SO) to the highest byte segment number among the received byte segments of the AMD PDU with SN = VR(X).

Editor’s note: With the current text, T_reordering can be triggered even for a missing AMD PDU for which a status report has already been triggered. E.g. when T_reordering expires and SN = VR(R) is detected as lost, T_reordering will be triggered again with the reception of another AMD PDU with SN > VR(R). It should be discussed if this is the desired behaviour or not.

Editor’s note: It is intended to specify details regarding RLC data PDU generation and delivery to lower layer at the transmitter and RLC data PDU reassembly, duplicate detection, reordering and loss detection, and RLC SDU reassembly and delivery to upper layers at the receiver in this section.

5.2
ARQ procedures

ARQ procedures are only performed by an AM RLC entity.

5.2.1
Retransmission

The transmitting side of an AM RLC entity can receive a negative acknowledgement (notification of reception failure by its peer AM RLC entity) for an AMD PDU or a portion of an AMD PDU by the following:

· STATUS PDU from its peer AM RLC entity;

· HARQ delivery failure from the transmitting MAC entity.

Editor’s note: It is reminded that the word “can” was deliberately chosen in the past since there were some doubts on whether HARQ deliver failure from the transmitting MAC entity should really trigger a retransmission or not. This phrase will be rephrased later when agreements are reached on this issue.

When receiving a negative acknowledgement for an AMD PDU or a portion of an AMD PDU, the transmitting side of the AM RLC entity should:

· If the SN of the corresponding AMD PDU falls within the STATUS receiving window:
· Consider the AMD PDU or the portion of the AMD PDU for which a negative acknowledgement was received for retransmission.
Editor’s note: Conditions when the RLC data PDU should not be considered for retransmission should be specified when identified. Also, the word “consider” is not appropriate as a specification text, and will be improved once the RLC architecture model is agreed.

When retransmitting an AMD PDU, the transmitting side of an AM RLC entity shall:

· If the AMD PDU can entirely fit into the TB of the particular transmission opportunity, deliver the AMD PDU as it is except for the P field (the P field should be set according to sub clause 5.2.2);

· Otherwise, segment the AMD PDU and form a new AMD PDU segment which will fit into the TB of the particular transmission opportunity, in which case:

When retransmitting a portion of an AMD PDU, the transmitting side of an AM RLC entity shall:

· Segment the portion of the AMD PDU as necessary and form a new AMD PDU segment which will fit into the TB of the particular transmission opportunity, in which case:

When forming a new AMD PDU segment, the transmitting side of an AM RLC entity shall:

· Only map the Data field of the original AMD PDU to the Data field of the new AMD PDU segment;

· Set the header of the new AMD PDU segment in accordance with the description in sub clause 6.:

Editor’s note: It is intended to specify more details as necessary regarding which RLC PDUs (or portions of them) should be considered for retransmission at the transmitter in this section.

5.2.2
Polling

An AM RLC entity can poll its peer AM RLC entity in order to trigger STATUS reporting at the peer AM RLC entity.

RRC configures which polling triggers are to be used by an AM RLC entity.

Triggers to initiate polling include:

· Transmission of last data in the buffer:

· The transmitting side of an AM RLC entity shall set the P field to “1” if the both the transmission buffer and the retransmission buffer are empty after the transmission of the RLC data PDU;

· AMD PDUs (or portions of them) in the retransmission buffer that are just awaiting for acknowledgments are not counted considered for this evaluation criteria;

· Expiry of poll retransmit timer:

· The transmitting side of an AM RLC entity shall:

· Start T_poll_retransmit upon setting the P field for a RLC data PDU to “1”, and store the SN of the corresponding RLC data PDU in memory;

· Stop T_poll_retransmit when it receives either a positive or negative acknowledgement for the corresponding RLC data PDU with the SN it stored in memory;

· Set the P field of the RLC data PDU to be transmitted in the next transmission opportunity if T_poll_retransmit expires.

Editor’s note: It has been decided to support either PDU count based polling trigger or Window based polling trigger in adition to the polling triggers indicated above.

5.2.3
Status reporting

An AM RLC entity sends STATUS PDUs to its peer AM RLC entity in order to provide positive and/or negative acknowledgements of RLC PDUs (or portions of them).

RRC configures whether or not the status prohibit function is to be used an AM RLC entity.

Triggers to initiate STATUS reporting include:

· Indication from upper layers;

· Polling from its peer AM RLC entity:

· The receiving side of an AM RLC entity shall trigger a STATUS report when it receives a RLC data PDU with the P field set to “1” and the HARQ reordering of the corresponding RLC data PDU is completed.

· Detection of reception failure of an RLC data PDU:

· The receiving side of an AM RLC entity shall trigger a STATUS report when T_reordering expires.

NOTE:
The expiry of T_reordering triggers both VR(MS) to be updated and a STATUS report to be triggered, but the STATUS report shall be triggered after VR(MS) is updated.
When constructing a STATUS PDU, the AM RLC entity shall:

· Set ACK_SN to VR(MS);

· For each AMD PDU with SN which falls within the STATUS transmitting window and have not been completely received yet:

· If no byte segments have been received yet for an AMD PDU:

· Include in the STATUS PDU a NACK_SN which is set to the SN of the AMD PDU;

· Else

· Include in the STATUS PDU a set of NACK_SN, SOstart and SOend for each consecutive byte segments of the AMD PDU that has not been received yet.

Editor’s note: The need for a status prohibit function has been agreed, but the exact mechanism is still FFS.

7
Variables, constants and timers

7.1
State variables

This sub clause describes the state variables used in AM and UM entities in order to specify the RLC protocol. The state variables defined in this subclause are normative.
All state variables (i.e. VT(A), VT(MS), VT(S), VR(R), VR(MR) and VT(US)) are non-negative integers.

All state variables related to AM data transfer (i.e. VT(A), VT(MS), VT(S), VR(R) and VR(MR)) can take values from 0 to 1023. All arithmetic operations contained in the present document on state variables related to AM data transfer are affected by the AM modulus (i.e. final value = [value from arithmetic operation] modulo 1024).

All state variables related to UM data transfer (i.e. VT(US)) can take values from 0 to [2[configured UM SN field length] – 1]. All arithmetic operations contained in the present document on state variables related to UM data transfer are affected by the UM modulus (i.e. final value = [value from arithmetic operation] modulo 2[configured UM SN field length]).

AMD PDUs and UMD PDUs are numbered integer sequence numbers (SN) cycling through the field: 0 to 1023 for AMD PDU and 0 to [2[configured UM SN field length] – 1] for UMD PDU.
When performing arithmetic comparisons of state variables or SN values, a modulus base shall be used. VT(A) and VR(R) shall be assumed as the modulus base at the transmitting side and receiving side of an AM RLC entity, respectively. This modulus base is subtracted from all the values involved, and then an absolute comparison is performed (e.g. VR(R) <= SN < VR(MR) is evaluated as [VR(R) – VR(R)] modulo 1024 <= [SN – VR(R)] modulo 1024 < [VR(MR) – VR(R)] modulo 1024).

7.1.1
State variables in AM transmitting side
The transmitting side of each AM RLC entity shall maintain the following state variables:

a) VT(A) – Acknowledgement state variable

This state variable holds the value of the SN of the next AMD PDU for which a positive acknowledgment is to be received in-sequence, and it serves as the lower edge of the transmitting window and the STATUS receiving window). It is initially set to 0, and is updated whenever the AM RLC entity receives a positive acknowledgment for an AMD PDU with SN = VT(A).

b) VT(MS) – Maximum send state variable

This state variable equals VT(A) + AM_Window_Size, and it serves as the higher edge of the transmitting window.

c) VT(S) – Send state variable

This state variable holds the value of the SN to be assigned for the next newly generated AMD PDU, and it serves as the higher edge of the STATUS receiving window. It is initially set to 0, and is updated whenever the AM RLC entity delivers an AMD PDU with SN = VT(S).

7.1.2
State variables in AM receiving side

The receiving side of each AM RLC entity shall maintain the following state variables:

a) VR(R) – Receive state variable

This state variable holds the value of the SN following the last in-sequence completely received AMD PDU, and it serves as the lower edge of the receiving window. It is initially set to 0, and is updated whenever the AM RLC entity receives an AMD PDU with SN = VR(R).

b) VR(R-SO) – Receive state variable (segment offset)

This state variable holds the position of the lowest not received byte segment of the AMD PDU with SN = VR(R). It is initially set to 0.

c) VR(MR) – Maximum acceptable receive state variable

This state variable equals VR(R) + AM_Window_Size, and it serves as the higher edge of the receiving window.

d) VR(X) – T_reordering state variable

This state variable holds the value of the SN of the RLC data PDU which triggered T_reordering or those following which are received in-sequence. It is initially set to NULL.

e) VR(X-SO) – T_reordering state variable (segment offset)

This state variable holds the position of the highest received byte segment of the AMD PDU with SN = VR(X). It is initially set to NULL.

f) VR(MS) – Maximum STATUS transmit state variable

This state variable holds the value of the highest SN that can be included in a STATUS report, i.e. it serves as the higher edge of the STATUS transmitting window. It is initially set to 0.
g) VR(MS1) – Maximum STATUS transmit higher edge state variable

This state variable holds the value of the SN following the highest SN that can be included in a STATUS report, i.e. it serves as the higher edge of the STATUS transmitting window. It is initially set to 0. /*Comment: VR(MS1) = VR(MS) + 1. The intention of introducing VR(MS1) is to keep the window higher edges being consistent, i.e. the higher edge is the first SN that is outside the window.*/
h) VR(RH) – Reordering higher edge state variable
This state variable equals VR(MS1) + AM_Reordering_Window_Size, and it serves as the higher edge of the reordering window.
7.1.3
State variables in UM transmitting side

Each transmitting UM RLC entity shall maintain the following state variables:

a) VT(US)

This state variable holds the value of the SN to be assigned for the next newly generated UMD PDU. It is initially set to 0, and is updated whenever the UM RLC entity delivers an UMD PDU with SN = VT(US).

7.1.4
State variables in UM receiving side

Each receiving UM RLC entity shall maintain the following state variables:

a) VR(UR) – UM receive state variable

This state variable holds the value of the SN of the earliest UMD PDU that is still considered for reordering, i.e. it serves as the lower edge of the reordering window. It is initially set to 0.

b) VR(UMR) – UM maximum acceptable receive state variable

This state variable equals VR(UR) + UM_Window_Size, and it serves as the higher edge of the reordering window.

c) VR(UX) – UM T_reordering state variable

This state variable holds the value of the SN of the UMD PDU which triggered T_reordering. It is initially set to NULL.

7.2
Constants

a) AM_Window_Size

This constant is used by both the transmitting side and the receiving side of each AM RLC entity to calculate VT(MS) from VT(A), and VR(MR) from VR(R). AM_Window_Size = 512.

b) UM_Window_Size

This constant is used by the receiving UM RLC entity to calculate VR(UMR) from VR(UR). UM_Window_Size = 16 when a 5 bit SN is configured and UM_Window_Size = 512 when a 10 bit SN is configured.
c) AM_Reordering_Window_Size
This constant is used by the receiving side of each AM RLC entity to calculate VR(L) from VR(H). It is FFS whether the value of this constant is determined by the number of HARQ processes and maximum number of retransmission in HARQ or configured by upper layers.
7.2
Timers

a) T_poll_retransmit

This timer is used by the transmitting side of an AM RLC entity in order to retransmit a poll.

b) T_reordering

This timer is used by the receiving side of an AM RLC entity and receiving UM RLC entity in order to detect loss of RLC PDUs at lower layer.

Editor’s note: It is intended to specify necessary details in this section as discussions proceed, but it is foreseen that at least discussions regarding transmit/receive/reordering window state variables, polling/STATUS reporting related state variables, polling/STATUS reporting/reordering/SDU discard related timers are needed.

 Reordering window

Receiving window

 Reordering window

STATUS

tx window

Receiving window

 Reordering window

STATUS

tx window

Receiving window

Receiving window

STATUS

tx window

STATUS

tx window

Receiving window

 Reordering window

Receiving window

 Reordering window

Receiving window

 Reordering window

