3GPP TSG-RAN WG2, Meeting #31
R2-021854
Stockhom, Sweden, 19-23 August, 2002

Agenda item:

6.2
Source:

Nokia

Title:

Introduction of Extension Container mechanism in ASN.1

Document for:

Discussion and decision

1. Scope

This document discusses the problem that with the non-critical extension mechanism currently used for the RRC protocol, it will no longer be possible to add R99 extensions to messages with additional Rel-4 IEs, after backwards compatibility is started for Rel-4. A possible solution is proposed, and the additional cost of this solution (extra bits used) under various conditions is also discussed.

The necessity for a mechanism which will allow corrections to be made to R99 after backwards compatibility has begun for Rel-4 is not debated in this document, although this decision must be also be taken and is included in Section 3. Section 2 of this document assumes that the mechanism is required, and details the current problem and proposed solution.

2. Discussion

2.1 Requirements

The requirements on the changes to the non-critical extension mechanism are:

1. Message encodings are backwards compatible.

2. It is possible to add new extensions in Release 99 even if such extensions have not been added to Release 4 (and newer releases). This means that release specific extensions shall be encapsulated so that a Release 4 receiver can skip unknown Release 99 extensions and can proceed to handle known Release 4 extensions.

2.2 Current solution, extensions are ordered based on release

The current solution is to add non-critical extensions in the end of a message. There is a placeholder for extensions in each message, a component named as nonCriticalExtensions.

-- Release 99 message

ExampleMessage ::=

CHOICE {

r3

SEQUENCE {

exampleMessage-r3

ExampleMessage-r3-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL
-- Placeholder

},

criticalExtensions

SEQUENCE {}

}

-- This sequence contains the actual Release 99 information elements.

ExampleMessage-r3-IEs ::= SEQUENCE {

ie1

IE1,

ie2

IE2

OPTIONAL

}

The structure of a PER encoded encoded message is as follows:

[image: image1.wmf]DOCUMENTTYPE

Nokia Research Center

TypeYourNameHere

TypeDateHere

choice

index= 0

nonCrit

Ext p-bit

ie2 p-bit

ie1

ie2

"p-bit" stands for a presence bit. Presence of IEs colored with light gray depends on p-bits.

The extensions are to be added as a components of the placeholder type. Further non-critical extensions can be introduced within another placeholder inside the placeholder type.

-- Release 4

ExampleMessage ::=

CHOICE {

r3

SEQUENCE {

exampleMessage-r3

ExampleMessage-r3-IEs,

nonCriticalExtensions

SEQUENCE {

-- Extensions

exampleMessage-ext-r4

ExampleMessage-ext-r4-IEs,

nonCriticalExtensions

SEQUENCE {}

OPTIONAL

}
OPTIONAL

},

criticalExtensions
SEQUENCE {}

}

-- Release 99 information elements

ExampleMessage-r3 ::= SEQUENCE {

ie1

IE1,

ie2

IE2
OPTIONAL

}

-- Release 4 extension information elements.

ExampleMessage-ext-r4-IEs ::=
SEQUENCE {

ext1

Ext1-R4,

ext2

Ext2-R4 OPTIONAL

}

The structure of encoded message is as follows:

[image: image2.wmf]DOCUMENTTYPE

Nokia Research Center

TypeYourNameHere

TypeDateHere

ext-r4

p

-bit

ext1

ext2

nonCrit

Ext p-bit

choice

index= 0

nonCrit

Ext p-bit

ie2 p-bit

ie1

ie2

ext2

p

-bit

Release 4 extensions

This fulfils the requirement 1 but does not fulfil the requirement 2, because it is not possible to add extensions to both the Release 99 and the Release 4 in a backwards compatible fashion. Reason fo this is that there is only one place where extensions can be added, the nonCriticalExtensions placeholder.

[image: image3.wmf]DOCUMENTTYPE

Nokia Research Center

TypeYourNameHere

TypeDateHere

ext-r4

p

-bit

ext1

ext2

nonCrit

Ext p-bit

choice

index= 0

nonCrit

Ext p-bit

ie2 p-bit

ie1

ie2

ext2

p

-bit

No insertion point

for R99 extensions

Release 4 extensions

In this solution it is not possible to know where release specific extensions stop and newer release specific extensions start without knowing all the release specific extensions.

This prohibits extension of the Release 99 if Release 4 extensions have been added.
2.3 Current solution with extension containers

It is possible to encapsulate release specific extensions in an extension container. An extension container contains encodings of release specific extensions and a length determinant. Thus it is possible to skip unknown extensions of earlier releases.

An extension container can be specified e.g. by using the CONTAINING construct. The construct is specified in the ASN.1 techical corrigendum ITU-T Rec. X.682 (1997)/Corr. 2 (2001) | ISO/IEC 8824-3:1998/Corr. 2:2001.
releaseSpecificExtensions

BIT STRING

(CONTAINING ReleaseSpecificExtensions)

Now the releaseSpecificExtensions contains a value of ReleaseSpecificExtensions encapsulated within a bit string. Unknown release specific extensions can be skipped over because the length of a received extension container bit string is known.

[image: image4.wmf]

Note: If the CONTAINING construct from the corrigendum is not used then the sim

ilar effect can be achieved

e.g. as follows:

releaseSpecificExtensions

BIT STRING

--

 releaseSpecificExtensions contains encoded value of ReleaseSpecificExtensions.

--

 Any trailing bits (containing unknown release specific extensions) after an encoded

--

 value of ReleaseSpecificExtensions in the bit string are ignored.

For example, when backwards compatibility is started for Release 4, the Release 99 version of the message has the extension container included:

-- Release 99 with empty extension container

ExampleMessage ::=

CHOICE {

r3

SEQUENCE {

exampleMessage-r3

ExampleMessage-r3-IEs,

laterNonCriticalExtensions

SEQUENCE {

-- Container for additional R99 extensions

exampleMessage-r3-add-ext

BIT STRING

(CONTAINING ExampleMessage-r3-add-ext-IEs)
OPTIONAL,

nonCriticalExtensions

SEQUENCE {}
OPTIONAL

}
OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

-- Release 99 information elements

ExampleMessage-r3-IEs ::=
SEQUENCE {

ie1

IE1,

ie2

IE2

OPTIONAL

}

-- Release 99 extension container

ExampleMessage-r3-add-ext-IEs ::=
SEQUENCE {

}

When Release 99 specific extensions are subsequently added, the extensions are encapsulated within the extension container:

-- Release 99 message with IE in extension container

ExampleMessage ::=

CHOICE {

r3

SEQUENCE {

exampleMessage-r3

ExampleMessage-r3-IEs,

laterNonCriticalExtensions

SEQUENCE {

-- Container for additional R99 extensions

exampleMessage-r3-add-ext

BIT STRING

(CONTAINING ExampleMessage-r3-add-ext-IEs)
OPTIONAL,

nonCriticalExtensions

SEQUENCE {}
OPTIONAL

}
OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

-- Release 99 information elements

ExampleMessage-r3 ::= SEQUENCE {

ie1

IE1,

ie2

IE2
OPTIONAL

}

-- Release 99 extension container

ExampleMessage-r3-add-ext-IEs ::=
SEQUENCE {

ext1

Ext1-r99

OPTIONAL,

-- More Release 99 specific extensions can be added here

nonCriticalExtensions

SEQUENCE {}

}

Structure of encoding message is as follows:

[image: image5.wmf]

ext1

nonCrit

Ext p

-

bit

choice

index= 0

nonCrit

Ext p

-

bit

ie2 p

-

bit

ie1

ie2

r3

-

a

-

ext

length

ext1

p

-

bit

r3

-

a

-

ext

p

-

bit

Release 99 extensions

The dark gray box represents the extension container.

Release 4 can now specified in parallel with Release 99. This is only possible as further Release 99 extensions will be contained within the extension container, thus unknown Release 99 extensions can be skipped:

-- Release 4 message with R99 extension container

ExampleMessage ::=

CHOICE {

r3

SEQUENCE {

exampleMessage-r3

ExampleMessage-r3-IEs,

laterNonCriticalExtensions

SEQUENCE {

-- Container for additional R99 extensions

exampleMessage-r3-add-ext

BIT STRING

(CONTAINING ExampleMessage-r3-add-ext-IEs)

OPTIONAL,

v450nonCriticalExtension

SEQUENCE {

exampleMessage-v450-ext

ExampleMessage-v450ext-IEs,

nonCriticalExtensions

SEQUENCE {}
OPTIONAL

} OPTIONAL

} OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

-- Release 99 information elements

ExampleMessage-r3-IEs ::=
SEQUENCE {

ie1

IE1,

ie2

IE2

OPTIONAL

}

-- Release 99 extension container

ExampleMessage-r3-add-ext-IEs ::=
SEQUENCE {

-- Contents may be unknown in Release 4

}

-- Release 4 extensions

ExampleMessage-v450ext-IEs ::=
SEQUENCE {

ext2

Ext2-R4

OPTIONAL

}

Structure of encoding message is as follows:

[image: image6.wmf]

ext

-

r4

p

-

bit

unknown R99

extensions

nonCrit

Ext p

-

bit

choice

index= 0

nonCrit

Ext p

-

bit

ie2 p

-

bit

ie1

ie2

r3

-

a

-

ext

length

ext2

nonCrit

Ext p

-

bit

ext

-

r

4

length

ext2

p

-

bit

r3

-

a

-

ext

p

-

bit

Release 99 extensions

Release 4 extensions

Despite the fact that Release 4 does not know the contents of the Release 99 extension container, it can skip these due to the presence of the length field, and continue to decode the Release 4 specific IEs.

The extension container solution fulfils both requirement 1 and requirement 2.

2.4 Cost Of Solution

It is appropriate to quantify the cost of this solution in terms of the number of extra bits it will add to the PER form.

If the extension container is not used (i.e. inserting the placeholder to provide the facility):

If the extension container for a particular Release N is not used, the cost to that release is 0 bits. This is possible as the extension container will be placed inside the already existing nonCriticalExtension, and if it is not needed it will never be sent, i.e. this extension will be absent.

For Release N+1 the cost is 1 bit – This is assuming that the message has some Rel-4 IEs added, otherwise this mechanism would not be required for this message. This occurs as there will be an extra optional bit present inside the nonCriticalExtension that would otherwise not be there.

Once the extension container is used the cost for each Release becomes the same:

· 1 presence bit for the extension container

· 8 bits for the extension container length field (assuming it contains <127 bits of data)

This gives a total overhead of 9 bits, after which the cost would be the same as if the new IE were being added in the normal manner.

3. Conclusion and proposal

The solution that has been detailed above will provide the facility to make essential corrections, that require the addition of a non-critical extension to the ASN.1 definitions of a Release, at any time in the future.

The cost for future use of the extension container could be considered high in cases where (e.g.) only one new data bit needed to be added. This cost should therefore form part of the decision making process at the time, and accompany the discussion on the seriousness of the correction being proposed. The cost of providing the facility however is very low, and is considered a small overhead to avoid future restrictions that may leave it impossible to make an essential correction.

Even if the proposed mechanism is agreed, the inclusion of it in each Release should be discussed at the appropriate time. It is possible that conditions will change such that even if it is felt necessary at present, it may not be needed in future.

RAN WG2 is asked to consider the following issues:

1. Is it considered a requirement to have a mechanism of this kind defined

2. If the answer to (1) is ‘Yes’, can the attached CR be agreed

3. If the answer to (1) is ‘Yes’, should the facility be provided for R99 (or should we delay the decision)

It proposed that if the answers to all of the above questions are ‘Yes’, that the timing of the changes required to the R99 ASN.1 definitions be discussed.

3GPP TSG-RAN WG2 Meeting #31
Tdoc (
R2-02xxxx

Stockholm, Sweden, 19-23 August 2002

	CR-Form-v7

	CHANGE REQUEST

	

	(

	25.921
	CR
	CRNum
	(

rev
	-
	(

Current version:
	3.7.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Introduction of backwards compatible correction mechanism

	
	

	Source:
(

	Nokia

	
	

	Work item code:
(

	TEI
	
	Date: (

	

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	R99

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	Currently once backwards compatibility is started for Rel-4 there will be now mechanism to allow corrections to be made to R99 ASN.1 messages definitions.

	
	

	Summary of change:
(

	Extension Containers principle introduced.

Impact Analysis: No Impact

There is no impact as this does not actually make any changes to the protocol specification, but introduces the mechanism so that the changes can be made.

	
	

	Consequences if
(

not approved:
	Once Backwards Compatibility is started for Rel-4 it will be impossible to make certain corrections to ASN.1.

	
	

	Clauses affected:
(

	

	
	

	
	Y
	N
	
	

	Other specs
(

	
	
	 Other core specifications
(

	

	affected:
	
	
	 Test specifications
	

	
	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

10.4
Extensions for future releases in RRC

10.4.1
Basic principles

All non-critical extensions are shown even if empty as it costs no bits.

10.4.2
Naming convention

The abstract type defining a message provides mechanisms to allow for extending the message in future releases:

-
For critical extensions, this is done by defining the message as a CHOICE of two alternatives, one being the intended message structure, and the other being an empty SEQUENCE named "criticalExtensions".

-
For non-critical extensions, this is done by defining an OPTIONAL element named "nonCriticalExtensions" of type "SEQUENCE {}" at the end of the message definition.

When extensions are introduced, this is done by replacing one of the empty SEQUENCEs by a new structure, that includes a new type containing the message extensions, and the same extension mechanism recursively for further extensions.

For critical extensions the new elements introduced to specify the extensions should be grouped together in an element with a name showing the release in which the extension was made, and this should be the same as for the new message root. For this naming, "r3" is used for Release '99, "r4" for Release 4, "r5" for Release 5 and so on.

For non-critical extensions the new elements introduced to specify the extensions should be grouped together in an element with a name showing the version of the specification where this extension will first be included, e.g. if the version of the specification being corrected is v3.7.0, then the suffix added to the name will be -v380ext (i.e. the next version).

If non-critical extensions for two different roots happen to be identical in contents, their types are still named differently, possibly with the second being declared as synonymous to the first.

An example is given below to illustrate these principles, on the message named "Test-msg".

-- In Release '99, the Test-msg is defined as following:

Test-msg ::= CHOICE {

r3

SEQUENCE {

test-msg-r3

Test-msg-r3-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

},

later-than-r3

SEQUENCE {

rrc-TransactionIdentifier

RRC-TransactionIdentifier,

criticalExtensions

SEQUENCE {}

}

}

-- A later correction to Release 99 adds a non-critical extension in v3.8.0

-- of the specification

Test-msg ::= CHOICE {

r3

SEQUENCE {

test-msg-r3

Test-msg-r3-IEs,

v380nonCriticalExtensions

SEQUENCE {

test-msg-v380ext

Test-msg-v380ext-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

} OPTIONAL

},

later-than-r3

SEQUENCE {

rrc-TransactionIdentifier

RRC-TransactionIdentifier,

criticalExtensions

SEQUENCE {}

}

}

-- The Test-msg gets the following structure, if only a non-critical

-- extensions is introduced for Release 4 in v4.4.0 of the specification.

Test-msg ::= CHOICE {

r3

SEQUENCE {

test-msg-r3

Test-msg-r3-IEs,

v380nonCriticalExtensions

SEQUENCE {

test-msg-v380ext

Test-msg-v380ext-IEs,

laterNonCriticalExtensions

SEQUENCE {

-- Container for additional R99 extensions

test-msg-r3-add-ext

BIT STRING

(COMTAINING Test-msg-r3-add-ext-IEs)

OPTIONAL,

v440nonCriticalExtensions

SEQUENCE {

test-msg-v440ext

Test-msg-v440ext-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

}
OPTIONAL

}
OPTIONAL

} OPTIONAL

},

later-than-r3

SEQUENCE {

rrc-TransactionIdentifier

RRC-TransactionIdentifier,

criticalExtensions

SEQUENCE {}

}

}

-- In Release 5, the Test msg gets the following structure when a critical

-- extension is added

Test-msg ::= CHOICE {

r3

SEQUENCE {

test-msg-r3

Test-msg-r3-IEs,

v380nonCriticalExtensions

SEQUENCE {

test-msg-v380ext

Test-msg-v380ext-IEs,

laterNonCriticalExtensions

SEQUENCE {

-- Container for additional R99 extensions

test-msg-r3-add-ext

BIT STRING

(CONTAINING Test-msg-r3-add-ext-IEs)

OPTIONAL,

v440nonCriticalExtensions

SEQUENCE {

test-msg-v440ext

Test-msg-v440ext-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

}
OPTIONAL

}
OPTIONAL

} OPTIONAL

},

later-than-r3

SEQUENCE {

rrc-TransactionIdentifier

RRC-TransactionIdentifier,

criticalExtensions

CHOICE {

r5

SEQUENCE {

test-msg-r5

Test-msg-r5-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

}

}

Critical extensions in Release N in message "Test-msg" should be included in the type "Test-msg-rN-IEs" (N=3 is used for Release '99).

If an abstract type is introduced in Release N when new elements are included in an extension, it should have a suffix "-rN". For Release '99 types, no such suffix is used.

If an abstract type is introduced in a release to extend an already existing type "TypeX", it should get the same name with a non-critical extension type suffix ("-vXYZext", e.g. "TypeX-v380ext") although in this case the final "–IEs" suffix is not added.

Using the above naming rules, when changes are done in Release N, only changes in types with a suffix "-rN" or "-vXYZext" are allowed, in order to avoid conflicts with previous releases. An exception is the Message type itself, which can be changed by replacing the empty SEQUENCEs with extensions as shown above, and elements having spare values defined, where the spare value can be replaced with a newly introduced value.

An exception to the above structure can be needed, if there are some elements to be used in a message, which need to be comprehended even in case of critical extensions (e.g. for error handling procedures). In this case, the elements can be placed before one of the criticalExtensions CHOICEs, as shown in the example below:

Test-msg ::= CHOICE {

r3

SEQUENCE {

test-msg-r3

Test-msg-r3-IEs,

v380nonCriticalExtensions

SEQUENCE {

test-msg-v380ext

Test-msg-v380ext-IEs,

nonCriticalExtensions

SEQUENCE {}
OPTIONAL

} OPTIONAL

},

later-than-r3

SEQUENCE {

rrc-TransactionIdentifier

RRC-TransactionIdentifier,

criticalExtensions

SEQUENCE {

importantElements

ImportantElements,

rest-of-message

CHOICE {

r4

SEQUENCE {

test-msg-r4

Test-msg-r4-IEs,

nonCriticalExtensions

SEQUENCE {}
OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

}

}

}

In the above example, the elements in "importantElements" can be comprehended from a UE implementing this structure, even if a future version of the message including critical extensions is transmitted (i.e. the criticalExtension branch of the second CHOICE is used).

NOTE 1:
The structure presented in this clause and the proposed naming rules are one possibility. Further possibilities are FFS.

NOTE 2:
When non-critical extensions are introduced in a message that does not have yet a criticalExtension branch, they are introduced in the "Test-msg-v380ext-IEs" type as described above. It is possible, that after this change, another change introduces a critical extension for the same message, thus defining a critical extension branch. In this case, the whole message is redefined in the type "Test-msg-rN-IEs", and care is to be taken to include in this new type also all non-critical extensions that were introduced previously, in a way that best fits the new structure of the message.

-
To be prepared for such cases, it could be beneficial to define in advance the "Test-msg-rN-IEs" whenever a non-critical extension is introduced, which would be an unused type mirroring the actual structure of the message, as long as no critical extensions are introduced, and would be used as the basis of the message if a critical extension is introduced. It is FFS if this concept is feasible, and if it should be introduced in the future.

10.4.3
Recommendations for extensions for further releases in RRC

10.4.3.1
General

When in RRC an information element group is to be extended, the extension cannot be done directly in that IE, but only in the top level of the message, in the extension IEs of the message structure shown in Example 1. For implementing the extension, it has therefore to be investigated, in which messages the element to be extended is included.

Depending on criticality of the extension, this will be done by using the criticalExtension CHOICE branch, or the nonCriticalExtension information element.

The following subclauses provide some recommendations on how to use these elements.

MessageA ::=

CHOICE {

r3

SEQUENCE {

messageA-r3

MessageA-r3-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

MessageA-r3-IEs ::=

SEQUENCE {

-- All messageA related information elements are included here.

}

Example 1

10.4.3.2
Critical Extensions

When the extension is a critical one (i.e. the receiver has to reject the whole message, and handle according to the error procedures of the protocol), the criticalExtension branch of the top-level CHOICE in the message is used. In this case the message information elements can be updated similar to the tabular, providing a message structure for the new release's information elements, similar to the updated structure in the tabular description.

Example 2 shows the structure of MessageA presented above, how it would become after a critical extension in Release 4.

In this example, in the criticalExtensions branch a new information element is defined (MessageA-r4-IEs) which will contain all messageA specific elements for Release 4, including the extensions in the place they fit naturally according to the semantics.

Note that in the new structure additional nonCriticalExtensions and criticalExtensions information elements are defined to allow for further extensions in future releases.

MessageA ::= CHOICE {

r3

SEQUENCE {

messageA-r3

MessageA-r3-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

},

later-than-r3

SEQUENCE {

rrc-TransactionIdentifier

RRC-TransactionIdentifier,

criticalExtensions

CHOICE {

r4

SEQUENCE {

messageA-r4

MessageA-r4-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

}

}

MessageA-r3-IEs ::=

SEQUENCE {

-- This is not changed compared to the above example. It includes all information

-- elements used in Release '99 for messageA.

}

MessageA-r4-IEs ::=

SEQUENCE {

-- Here, the updated information elements used for MessageA in Release 4 are included.

}

Example 2

10.4.3.3
Non-critical Extensions

For non-critical extensions (i.e. the receiver shall just ignore the extensions, and use the rest of the message as if the extensions were not present), the approach is to use the nonCriticalExtensions information element, which is encoded at the end of the message, allowing backward compatibility.

Before Backwards Compatibility is started for the following release (N +1), the non-critical extension information elements of the current release (N) are added at the end of the message. At the point when Backwards Compatibility is started for the following release (N + 1), optional BIT STRING container shall be added before the information elements of the new release. In the case that further non-critical extension information elements need to be added to release N they shall be placed within the BIT STRING container.

For example: As long as Backwards Conpatibility is not being enforced for Rel-4, R99 extensions are added normally in the end of a message within a nonCriticalExtensions sequence. Once Backwards Compatibility is started for Rel-4, then new R99 specific extensions are introduced within an extension container. An extension container is a normal bit string field that encapsulates an extension structure. As a result

- New extensions can be added both in R99 and Rel-4 in a backwards compatible fashion

- Rel-4 systems are able to skip over unknown R99 extensions

The structure of the message of the example above is shown in Example 3 for Release 99 and 4 messages.

Examples for special non-critical extensions and MessageA-v440ext-IEs are given in the following subclauses.

-- This shows the message structure in R99 (including one non-critical extension)

-- before backwards compatibility is started for Rel-4.

MessageA ::=

CHOICE {

r3

SEQUENCE {

messageA-r3

MessageA-r3-IEs,

v380nonCriticalExtensions

SEQUENCE {

messageA-v380ext

MessageA-v380ext-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

}
OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

MessageA-r3-IEs ::=

SEQUENCE {

-- This is not changed compared to the same IE in R99. It includes all information

-- elements used in R99 for MessageA.

}

MessageA-v380ext-IEs :: =

SEQUENCE {

-- Here are information elements added to R99 as extensions to the information

-- contained in MessageA-r3-IEs.

}

-- This shows the R99 message structure once backwards campatibility

-- has been started for Rel-4.
MessageA ::=

CHOICE {

r3

SEQUENCE {

messageA-r3

MessageA-r3-IEs,

v380nonCriticalExtensions

SEQUENCE {

messageA-v380ext

MessageA-v380ext-IEs,

laterNonCriticalExtensions

SEQUENCE {

-- Container for additional R99 extensions

messageA-r3-add-ext

BIT STRING

(CONTAINING MessageA-r3-add-ext-IEs)

OPTIONAL,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

}
OPTIONAL

}
OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

MessageA-r3-IEs ::=

SEQUENCE {

-- This is not changed compared to the same IE in R99. It includes all information

-- elements used in R99 for MessageA.

}

MessageA-v380ext-IEs :: =

SEQUENCE {

-- Here are information elements added to R99 as extensions to the information

-- contained in MessageA-r3-IEs.

}

MessageA-r3-add-ext-IEs :: =

SEQUENCE {

-- Here are information elements added to R99 as extensions to the information

-- contained in MessageA-r3-IEs after backwards compatibility was started for Rel-4.
}
-- This shows the structure of the Rel-4 message
-- (including one Rel-4 non-critical extension).
MessageA ::=

CHOICE {

r3

SEQUENCE {

messageA-r3

MessageA-r3-IEs,

v380nonCriticalExtensions

SEQUENCE {

messageA-v380ext

MessageA-v380ext-IEs,

laterNonCriticalExtensions

SEQUENCE {

-- Container for additional R99 extensions

messageA-r3-add-ext

BIT STRING

(CONTAINING MessageA-r3-add-ext-IEs)

OPTIONAL,

v440nonCriticalExtensions

SEQUENCE {

messageA-v440ext

MessageA-v440ext-IEs,

nonCriticalExtensions

SEQUENCE {} OPTIONAL

}
OPTIONAL

}
OPTIONAL

}
OPTIONAL

},

criticalExtensions

SEQUENCE {}

}

MessageA-r3-IEs ::=

SEQUENCE {

-- This is not changed compared to the same IE in R99. It includes all information

-- elements used in R99 for MessageA.

}

MessageA-v380ext-IEs :: =

SEQUENCE {

-- Here are information elements added to R99 as extensions to the information

-- contained in MessageA-r3-IEs.
}

MessageA-r3-add-ext-IEs :: =

SEQUENCE {

-- Here are information elements added to R99 as extensions to the information

-- contained in MessageA-r3-IEs after backwards compatibility was started for Rel-4.
}
MessageA-v440ext-IEs ::=

SEQUENCE {

-- Here are information elements added to Rel-4 as extensions to the information

-- contained in MessageA-r3-IEs and MessageA-v380ext-IEs.
}

Example 3

�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

_1047275932.doc

DOCUMENTTYPE

1 (1)

Nokia Research Center

TypeYourNameHere

TypeDateHere

Release 4 extensions

ext-r4 p�bit

nonCrit Ext p-bit

ext2 p�bit

ext1

ext2

ie2

ie2 p-bit

choice index= 0

nonCrit Ext p-bit

ie1

_935227290.doc

_1089092900.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		Nokia Research Center

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

[image: image1.bmp]

Release 99 extensions

r3-a-ext p�bit

nonCrit Ext p-bit

ext1 p�bit

r3-a-ext length

ext1

ie2

ie2 p-bit

choice index= 0

nonCrit Ext p-bit

ie1

_935227290.doc

_1089093916.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

Note: If the CONTAINING construct from the corrigendum is not used then the similar effect can be achieved e.g. as follows:

releaseSpecificExtensions		BIT STRING

	-- releaseSpecificExtensions contains encoded value of ReleaseSpecificExtensions.

	-- Any trailing bits (containing unknown release specific extensions) after an encoded

	-- value of ReleaseSpecificExtensions in the bit string are ignored.

_935227290.doc

_1047276008.doc

DOCUMENTTYPE

1 (1)

Nokia Research Center

TypeYourNameHere

TypeDateHere

Release 4 extensions

nonCrit Ext p-bit

ext-r4 p�bit

No insertion point for R99 extensions

ext2 p�bit

ext1

ext2

ie2

ie2 p-bit

choice index= 0

nonCrit Ext p-bit

ie1

_935227290.doc

_1089014116.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		Nokia Research Center

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

[image: image1.bmp]

Release 4 extensions

Release 99 extensions

ext2 p�bit

ext-r4 length

nonCrit Ext p-bit

ext2

ext-r4 p�bit

r3-a-ext length

nonCrit Ext p-bit

r3-a-ext p�bit

unknown R99 extensions

ie2

ie2 p-bit

choice index= 0

nonCrit Ext p-bit

ie1

_935227290.doc

_1045388852.doc

DOCUMENTTYPE

1 (1)

Nokia Research Center

TypeYourNameHere

TypeDateHere

ie2

ie1

ie2 p-bit

nonCrit Ext p-bit

choice index= 0

_935227290.doc

