
TSG-RAN Working Group 2 meeting #8 TSGR2#8(99)F25
Cheju, Korea 2nd to 5th November 1999
Agenda Item:
16

Source:
NTT DoCoMo

Title:
Editorial changes on RLC protocol specification

Document for:
Decision

1 Introduction

This contribution proposes some editorial changes on TS25.322 v3.0.0 [1].

2 Proposed editorial changes

The purpose of the editorial changes shown below is to make the contents of the current RLC specification [1] clearer and update the current SDL in accordance with the latest text in [1].

· 8.1 Primitives between RLC and higher layers

“AM_paprameters” has been added in the primitive “CRLC-CONFIG.Req” since currently it has not been clear how the parameters for AM operation (e.g. Poll triggers, Status triggers, Timer values, etc.) are indicated by RRC.

· 9.2.2.7.1 AMD PDU Extended Header

The length of current extended header is 14 bits and it has not been clear whether 2 bits Padding or Reserved field should be added after the HE field or not. Therefore, “Reserved field” has been added in the extended header to make it octet aligned.

· 9.5 Timers

Current RLC specification says that a poll shall be transmitted whenever it is triggered and Timer_Poll_Prohibit is not active (if it is used). But if there is no PU to be transmitted and all PUs have already been acknowledged when poll is triggered, it is not necessary to transmit a poll since it will only cause overhead. Therefore the text on this has been added to the Timer_Poll, the Timer_Poll_Prohibit, and the Timer_Poll_Periodic.

· Annex A SDL diagrams

We updated the RLC SDL in accordance with the updating of RLC specification and modified it based on the comments from the previous SDL e-mail discussion. The main changes from the current SDL are shown below.

· The names of the parameters, the timers, the local variables have been changed accordance with the latest RLC specification.

· The declarations for the variables and the procedures, which are lacked in the current SDL, have been added.

· The processes of the reception of the WINDOW super field and the RLIST super field of STATUS PDU have been added.

· The process of the SDU discard after the MaxDAT number of retransmissions has been added.

· The process of after expiry of Timer_Poll_Prohibit has been changed accordance with the change of the RLC specification.

· Explicit description of modulo computation has been removed.

· The local timer “Timer_AM” has been removed. And “xxx queued up” is used instead of it.

· The STAT queue has been removed.

· The process of reception of the RESET ACK within the Ack. Data Transfer Ready state has been added.

· The process of reception of the RESET ACK within the Reset Pending state has been added.

3 References

[1] TS25.322 v.3.0.0: RLC protocol specification

4 Proposed changes to RLC specification

The following pages show the proposed CR to TS25.322 v.3.0.0 [1].

3GPP TSG RAN WG2 meeting #8
Document
R2-99F25

Cheju, Korea, 02-05 November 1999

e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST
Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

TS25.322
CR
002
Current Version:
3.0.0

GSM (AA.BB) or 3G (AA.BBB) specification number (

(CR number as allocated by MCC support team

For submission to:
RAN#6
for approval
X

strategic

(for SMG

list expected approval meeting # here (
for information

non-strategic

use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects:
(U)SIM

ME
x
UTRAN / Radio
X
Core Network

(at least one should be marked with an X)

Source:
NTT DoCoMo
Date:
1999-11-4

Subject:
Editorial changes on RLC protocol specification

Work item:

Category:
F
Correction

Release:
Phase 2

A
Corresponds to a correction in an earlier release

Release 96

(only one category
B
Addition of feature

Release 97

shall be marked
C
Functional modification of feature

Release 98

with an X)
D
Editorial modification
x

Release 99
X

Release 00

Reason for
change:

To make the contents of current RLC specification clearer and to update the RLC SDL in accordance with the latest RLC specification.

Clauses affected:
8.1, 9.2.2.7.1, 9.5, Annex A

Other specs
Other 3G core specifications

(List of CRs:

affected:
Other GSM core specifications

(List of CRs:

MS test specifications

(List of CRs:

BSS test specifications

(List of CRs:

O&M specifications

(List of CRs:

Other
comments:

[image: image81.emf] <--------- double-click here for help and instructions on how to create a CR.

-

8.1
Primitives between RLC and higher layers

The primitives between RLC and upper layers are shown in table 8-1.

Table 8‑1 : Primitives between RLC and upper layers

Generic Name
Parameter

Req.
Ind.
Resp.
Conf.

RLC-AM-DATA
Data, CFN, MUI
Data
Not Defined
MUI

RLC-UM-DATA
Data,
Data
Not Defined
Not Defined

RLC-TR-DATA
Data
Data
Not Defined
Not Defined

CRLC-CONFIG
E/R, Ciphering Elements (UM/AM only), AM_parameters (AM only)
Not Defined
Not Defined
Not Defined

CRLC-STATUS
Not Defined
EVC
Not Defined
Not Defined

Each Primitive is defined as follows:

RLC-AM-DATA-Req/Ind/Conf

-
RLC-AM-DATA-Req is used by higher layers to request transmission of a higher layer PDU in acknowledged mode.

-
RLC-AM-DATA-Ind is used by RLC to deliver to higher layers RLC SDUs, that have been transmitted in acknowledged mode.

-
RLC-AM-DATA-Conf is used by RLC to confirm to higher layers the transmission of a RLC SDU.

RLC-UM-DATA-Req/Ind

-
RLC-UM-DATA-Req is used by higher layers to request transmission of a higher layer PDU in unacknowledged mode.

-
RLC-UM-DATA-Ind is used by RLC to deliver to higher layers RLC SDUs, that have been transmitted in unacknowledged mode.

RLC-TR-DATA-Req/Ind

-
RLC-TR-DATA-Req is used by higher layers to request transmission of a higher layer PDU in transparent mode.

-
RLC-TR-DATA-Ind is used by RLC to deliver to higher layers RLC SDUs, that have been transmitted in transparent mode.

CRLC-CONFIG-Req

This primitive is used by RRC to establish, release or reconfigure the RLC. Ciphering elements are included for UM and AM operation.

CRLC-STATUS-Ind

It is used by the RLC to send status information to RRC.

Following parameters are used in the primitives:

1)
The parameter Data is the RLC SDU that is mapped onto the Data field in RLC PDUs. The Data parameter may be divided over several RLC PDUs. In case of a RLC-AM-DATA or a RLC-UM-DATA primitive the length of the Data parameter shall be octet alligned.

2)
The parameter Confirmation request (CNF) indicates whether the RLC needs to confirm the correct transmission of the RLC SDU.

3)
The parameter Message Unit Identifier (MUI) is an identity of the RLC SDU, which is used to indicate which RLC SDU that is confirmed with the RLC-AM-DATA conf. primitive.

4)
The parameter E/R indicates whether RLC should enter or exit the data transfer ready state.

5)
The parameter Event Code (EVC) indicates the reason for the CRLC-STATUS-ind (i.e. unrecoverable errors such as data link layer loss or recoverable status events such as reset, etc.).

6) The parameter ciphering elements are only applicable for UM and AM operation. These parameters are Ciphering Mode, Ciphering Key and Ciphering Sequence Number.
7) The AM_parameters is only applicable for AM operation. It contains PDU size, PU size, Timer values (see section 9.5), Protocol parameter values (see section 9.6), Polling triggers (see section 9.7.1), Status triggers (see section 9.7.2), SDU discard mode (see section 9.7.3),.
9.2.2.7.1
AMD PDU Extended Header

The Extended Header is used when additional sequence numbers are needed to indicate PUs that are not sequential within a PDU or when the rest of a PDU, which is not filled by PUs, is equal or larger than the size of a PU. A PDU that includes more than one sequence number shall include sequence numbers for all PUs in the PDU. The nth sequence number in the PDU indicates the sequence number of the nth PU in the PDU. The decision to use Extended Header is made by the transmitting RLC.

First all the Extended Headers are listed. Then all Length Indicators are listed. Finally the PUs follow.

[image: image3.wmf]Sequence Number

Sequence Number

Oct

1

Oct

2

HE

R

Figure 9‑7: Format of the extended header

9.5
Timers

a)
Timer_Poll

This timer is only used when the poll timer trigger is used. It is started when the transmitting side sends a poll to the peer entity. The timer is stopped when receiving a STATUS PDU that contains an acknowledgement or negative acknowledgement of the AMD PDU that triggered the timer. The value of the timer is signalled by RRC.

If the timer expires and no STATUS PDU containing an acknowledgement or negative acknowledgement of the AMD PDU that triggered the timer has been received, the receiver is polled once more (either by the transmission of a PDU which was not yet sent, or by a retransmission) and the timer is restarted. If there is no PU to be transmitted and all PUs have already been acknowledged, the receiver shall not be polled.

If a new poll is sent when the timer is running it is restarted.

b)
Timer_Poll_Prohibit

This timer is only used when the poll prohibit function is used. It is used to prohibit transmission of polls within a certain period. A poll shall be delayed until the timer expires if a poll is triggered when the timer is active Only one poll shall be transmitted when the timer expires even if several polls were triggered when the timer was active. If there is no PU to be transmitted and all PUs have already been acknowledged, a poll shall not be transmitted. This timer will not be stopped by a STATUS PDU. The value of the timer is signalled by RRC.

c)
Timer_EPC

This timer is only used when the EPC function is used and it accounts for the roundtrip delay, i.e. the time when the first retransmitted PU should be received after a STATUS has been sent. The timer is started when a STATUS report is transmitted and when it expires EPC can start decrease (see section 9.7.3). The value of the timer is signalled by RRC.
d)
Timer_Discard

This timer is used for the SDU discard function. In the transmitter, the timer is activated upon reception of a SDU from higher layer. If the SDU has not been acknowledged when the timer expires, the SDU is discarded and a Move Receiving Window request is sent to the receiver. If the SDU discard function does not use the Move Receiving Window request, the timer is also used in the receiver, where it is activated once a PDU is detected as outstanding, i.e. there is a gap between sequence numbers of received PDUs. The value of the timer is signalled by RRC.

e)
Timer_Poll_Periodic

This timer is only used when the timer based polling is used. The timer is started when the RLC entity is created. Each time the timer expires a poll is transmitted and the timer is restarted. If there is no PU to be transmitted and all PUs have already been acknowledged, a poll shall not be transmitted and the timer shall only be restarted. The value of the timer is signalled by RRC.

f)
Timer_Status_Prohibit

This timer is only used when the STATUS PDU prohibit function is used. It prohibits the receiving side from sending STATUS PDUs. The timer is started when a STATUS PDU is transmitted and no new STATUS PDU can be transmitted before the timer has expired. The value of the timer is signalled by RRC.

g)
Timer_Status_Periodic

This timer is only used when timer based STATUS PDU sending is used. The timer is started when the RLC entity is created. Each time the timer expires a STATUS PDU is transmitted and the timer is restarted. The value of the timer is signalled by RRC.

h)
Timer_RST

It is used to detect the loss of RESET ACK PDU from the peer RLC entity. This timer is set when the RESET PDU is transmitted. And it will be stopped upon reception of RESET ACK PDU. If it expires, RESET PDU will be retransmitted.

Annex A (informative):
SDL diagrams

This annex contains the SDL diagrams. For Release’99, it is meant for informative purposes only.

[All the section shall be reviewed when the protocol is defined;

all the SDL diagrams presented are [FFS]]

[image: image1.wmf]help.doc

[image: image29.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_Signals(52)

Am

(Am_to_AmSap)(AmSap_to_Am)

Dtch

(Am_to_DtchSap)(DtchSap_to_Am)

Dcch

(Am_to_DcchSap)(DcchSap_to_Am)

[image: image30.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_Declarations(52)

DCL

 /*SDU, PDU, and PU declarations:__________________________ */

 sdu OctetType,

 /*The sdu data from the upper layer protocol.*/

 amd_pdu AmPdu,

 /*A representation of data contained within an AMD PDU.*/

 am_pu AmPu,

/*A representation of a local am_pu. */

 status_pdu, StatPdu,

 /*A representation of data contained within an STATUS PDU.*/

 /*SDU, PDU and PU array declarations:______________________*/

 sdus OctetArrayType,

 /*An array containing SDUs.*/

 pdus AmPduArrayType,

 /*An array containing AMD PDUs initially segmented from SDUs.*/

 rem_pdus AmPduArrayType,

 /*An array containing AMD PDUs to be removed from queues.*/

 am_pus, AmPuArrayType,

 /* An array containing PUs*/

 /*Queue declarations:___________________________________*/

 receiver_queue Queue,

 /*A queue used for storing PDUs as they arrive.*/

 retransmission_queue Queue,

 /*A queue used for PDUs that are to be retransmitted.*/

 assembly_queue Queue,

 /*A queue used for reassembly of received PDUs into an SDU.*/

 transmitted_queue Queue,

 /*A queue used for PDUs that have been transmitted.*/

 am_queue Queue;

 /*A queue used for PDUs to be transmitted.*/

[image: image31.emf]

[image: image32.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 3_Declarations(52)

DCL

/*Parameter declarations:____________________________________*/

 e_r ERParameterType,

 /*The parameter indicating wheter RLC AM entity should be

 established or released.*/

 poll_triggers PollTriggArrType,

 /*A configuration parameter dealing with when to issue poll requests.*/

 protocol_parameters ProtocolParametersStructType,

 /*A struct variable containing the protocol parameters set.*/

 status_triggers StatusTriggArrType,

 /*A configuraion parameter dealing with when to issue Status reports.*/

 timer_durations TimerDurationsStructType,

 /*A struct containing the various timer durations.*/

 discard DiscardArrayType,

 /*A configuration parameter identifying discard conditions.*/

 ciphering_mode CipheringModeType,

 /*The ciphering mode.*/

 ciphering_key CipheringKeyType,

 /*The ciphering key.*/

 ciphering_sn CipheringSequenceNumberType,

 /*The ciphering sequence number.*/

 pdu_size OctetType,

 /*The size in octets of an AMD PDU.*/

 pu_size OctetType,

 /*The size in octets of a PU.*/

 /*Sequence number variables:__________________________________*/

 sn_ack, sq SequenceNumberType,

 /*A local sequence number.*/

 polled_sn SequenceNumberType,

 /*A local sequence number used to store the sequence number

 of the PU that tirrgered Timer_Poll .*/

 poll_window SequenceNumberType,

 /*The size of the poll_window.*/

 receive_window SequenceNumberType,

 /*The receive window size.*/

 transmit_window SequenceNumberType;

 /*The transmit window size.*/

[image: image33.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 4_Declarations(52)

DCL

 /*Local variabales:____________________________________*/

logical_channel LogicalChannelType,

 /*The logical channel associated with transmissions.*/

 i, j, k INTEGER,

 /*A local counter.*/

 end_state EndStateType,

 /*A variable used to ensure correct timer reset.*/

 mui MuiType,

 /*The message uit identifier associated with a message (SDU)

 to be transmitted.*/

 muis MuiArrayType,

 /*An array used to store message unit identifiers.*/

 codewords CodewordArrayType,

 /*An array used to store the codewords.*/

 n_sq PduIndexType,

 /*The number of sequence numbers that inidaicte the erroneous PUs.*/

 n_sdu PduIndexType,

 /*The number of SDUs reassembled from PUs.*/

 n_pdu PduIndexType,

 /*The number of AMD PDUs created from a SDU.*/

 n_pu PduIndexType,

 /*The number of PUs included in a AMD PDU.*/

 n_pu_per_tti PduIndexType;

 /*The number of PUs received within a TTI.*/

[image: image34.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 5_Declarations(52)

DCL

 /*Local variabales:____________________________________*/

 tot_mui PduIndexType,

 /*A local variable for maintaining knowledge of the total number of message

 unit identifiers related to the SDUs that have been acknowledged.*/

 tot_rem PduIndexType,

 /*A local variable for maintaining knowledge of the total number of

 AMD PDUs removed from transmitted queue.*/

 tot_sufi PduIndexType,

 /*A local variable for maintaining knowledge of the total number of super fields.*/

 tot_list PduIndexType,

 /*A local variable for maintaining knowledge of the total number of

 (SNi, Li)-pairs in the list super fields.*/

 tot_bitmap PduIndexType,

 /*A local variable for maintaining knowledge of the total length

 of the bitmap.*/

 tot_rlist PduIndexType,

 /*A local variable for maintaining knowledge of the total length

 of the codewords.*/

 poll_win REAL,

 /*A local variable used to store the current transmit window usage.*/

 sufi SufiStructType,

 /*The contents of one superfield.*/

 sufis SufiArrayStructType;

 /*The set of superfields associated with a status report.*/

[image: image35.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 6_Declarations(52)

DCL

 /*State variable declarations:__*/

vt_s SequenceNumberType,

 /*Send state variable: The sequence number of the next pu to be transmitted for the first time (i.e

 excluding retransmissions). It is updated after transmission of a PDU which includes not earlier

 transmitted PUs.*/

 vt_a SequenceNumberType,

 /*Acknowledge state variable: The sequence number of the next in-sequence PU expected to

 be acknowledged, thus forming the lower edge of the window of acceptable acknowledgements.

 The variable vt_a is updated based on receipt of a STATUS PDU including an ACK super-field.*/

 vt_dat SequenceNumberType,

 /*This state variable counts the number of times a PU has been transmitted. There is one vt_dat for

 each PU and it is incremented each time the PU is transmitted.*/

 vt_ms SequenceNumberType,

 /*Maximum send state variable: The sequence number of the first PU not allowed by the peer

 receiver vt_ms=vt_a+ window size+1. This value represents the upper edge of the transmit window.

 The transmitter shall not transmit a new PU if vt_s >= vt_ms. The variable vt_ms is updated based

 on receipt of a STATUS PDU incluiding an ACK and/or WINDOW super-field.*/

 vt_pu SequenceNumberType,

 /*This state variable is used when the poll every Poll_PU PU function is used. It is incremented with

 1 for each PU that is transmitted. It should be incremented for both new and retransmitted Pus.

 When it reaches Poll_PU a new poll is transmitted and the state variable is set to zero.*/

 vt_sdu SequenceNumberType,

 /*This state variable is used when the poll every Poll_SDU SDU function is used. It is incremented

 with 1 for each SDU that is transmitted. When it reaches Poll_SDU a new poll is transmitted and

 the state variable is set to zero. The poll bit should be set in the PU that contains the last segment

 of the SDU.*/

 vt_rst SequenceNumberType,

 /*Reset state variable: This variable is used to count the number of times a RESET PDU is transmit-

 ted. It is incremented with 1 each time a RESET PDU is transmitted. It is reset upon reception of

 a RESET ACK PDU.*/

 vr_r SequenceNumberType,

 /*Receive state variable: The sequence number of the next in sequence PU expected to be received.

 It is updated upon receipt of the next in-sequence pdu.*/

 vr_h SequenceNumberType,

 /*Highest expected state variable: The sequence number of the next highest expected pdu. The vari-

 able is updated whenever a new pdu is received.*/

 vr_mr SequenceNumberType,

 /*Maximum acceptable receive state variable: The sequence number of the first pdu not allowed

 by the receiver, thus the receiver shall discard pdus with an n_s=vr_mr. Updating of vr_mr is im-

 plementation dependent but should not be set toa value less than vr_h.*/

 vr_ep SequenceNumberType;

 /*Estimated PDU counter state variable: The number of PUs that should have been received after

 the latest STATU PDU was sent. In acknowledged mode, this state variable is updated at the

 end of each transmission time interval. If vr_ep is equal to the number of requested PUs in the

 latest STATUS PDU it should be checked if all PUs requested for retransmission have been

 received.*/

[image: image36.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 7_Declarations(52)

TIMER

 Timer_Poll,

 /*This timer is only used when the poll timer trigger is used. It is started when the transmitting side sends a

 poll to the peer entity. The timer is stopped when receiving a STATUS PDU with the PA bit set. The value

 of the timer is signalled by RRC. If the timer expires and no STATUS PDU with the PA bit set has been

 received the receiver is polled once more (either by the transmission of a PDU which was not yet sent, or

 by a retransmission) and the timer is restarted. If a new poll is sent when the timer is running it is restarted. */

 Timer_Poll_Prohibit,

 /*This timer is only used when the poll prohibit function is used. It is used to prohibit transmission of polls

 within a certain period. If polling is taken place during this timer is active, it will be once stopped and set

 again. This timer will not be stopped by a STATUS PDU. When this timer expires no action is performed.

 The value of the timer is signalled by RRC. */

 Timer_EPC,

 /*This timer is only used when the EPC function is used and it accounts for the roundtrip delay, i.e. the time

 when the first retransmitted PU should be received after a STATUS has been sent. The timer is started when

 a STATUS report is transmitted and when it expires EPC can start decrease (see section 9.7.3). The value of the

 timer is signalled by RRC*/

 Timer_Discard(MuiType),

 /*This timer is used for the SDU discard function. In the transmitter, the timer is activated upon reception of a SDU

 from higher layer. If the SDU has not been acknowledged when the timer expires, the SDU is discarded and a

 Move Receiving Window request is sent to the receiver. If the SDU discard function does not use the Move

 Receiving Window request, the timer is also used in the receiver, where it is activated once a PDU is detected

 as outstanding, i.e. there is a gap between sequence numbers of received PDUs. The value of the timer is

 signalled by RRC.*/

 Timer_Poll_Periodic,

 /*This timer is only used when the timer based polling is used. The timer is started when the RLC entity is

 created. Each time the timer expires a poll is transmitted and the timer is restarted. The value of the timer

 is signalled by RRC.*/

 Timer_Status_Prohibit,

 /*This timer is only used when the STATUS PDU prohibit function is used. It prohibits the receiving side

 from sending STATUS PDUs. The timer is started when a STATUS PDU is transmitted and no new STATUS

 PDU can be transmitted before the timer has expired. The value of the timer is signalled by RRC.*/

 Timer_Status_Periodic,

 /*This timer is only used when timer based STATUS PDU sending is used. The timer is started when the RLC

 entity is created. Each time the timer expires a STATUS PDU is transmitted and the timer is restarted. The

 value of the timer is signalled by RRC.*/

 Timer_RST;

 /*It is used to detect the loss of RESET ACK PDU from the peer RLC entity. This timer is set when the RESET

 PDU is transmitted. And it will be stopped upon reception of RESET ACK PDU. If it expires, RESET PDU

 will be retransmitted.*/

[image: image37.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_LocalProcedures(52)

Queue_initialization

This procedure initializes all queues.

Sdu_am_segmentation

This procedure manages segmentation and concatenation of

sdus.

Place_in_queue

This procedure places the indicated pdu within the queue

given as parameter to the procedure

Place_several_in_queue

This procedure places several AMD PDUs in the indicated queue.

Place_piggyback_in_queue

This procedure places a piggybacked STATUS PDU

onto a AMD PDU within a queue.

Remove_from_queue

This procedure removes the first PDU in the queue given as

a parameter to the procedure.

Remove_identified_from_queue

This procedure removes a PU with a given sequence number

from the queue identified.

Remove_list_from_queue

This procedure removes a list of PUs indicated by sequence numbers

from the transmitted queue and retransmission queue.

Remove_bitmap_from_queue

This procedure removes a list of PUs in accordance with a bitmap

from the transmitted queue and retransmission queue.

Remove_rlist_from_queue

This procedure removes a list of PUs indicated by codewordes

from the transmitted queue and retransmission queue.

Remove_all_below_ack_and_get_muis

This procedure removes all PUs that have been acknowledged

(SN < LSN) from the transmitted queue and stores the muis that

are removed from the queue in a special array.

Remove_mui_from_queue

This procedure removes all PUs associated with a given mui

from the transmitted queue and retranmission queue.

Remove_all_below_mrw_from_queue

This procedure removes all PUs below the move receiving window

(SN < MRW) from the receiver queue.

[image: image38.emf]

[image: image39.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 3_LocalProcedures(52)

Initialize_state_variables

This procedure sets the state variables appropriately.

Increment_vtDat

This procedure increments vt_dat whenever

the relative PU is transmitted.

Exists_in_receiver_queue

This procedure checks if an identified PU exists within the

receiver queue.

Read_pdu

This procedure retrieves a copy of the first entry in

the queue indicated as parameter to the procedure.

Update_state_variables

This procedure updates the state variables vt_a and vt_ms

after a STATUS PDU has been received and processed.

Set_poll_flag

This procedure causes the polling flag to be set in the first PDU

within a defined queue

Estimate_number_of_pus

This procedure is used to estimate the number of PUs

that have been received within a TTI.

Contains_polledSN

This procedure checks whether the received STATUS PDU contains

acknowledgement or unacknowledgement nack for the PU

 that triggered Timer_Poll.

Reassemble_am_pu

This procedure reassembles PUs to SDUs as

they arrive.

[image: image40.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_ProcessTypeStart(52)

Queue_initialization(am_queue, transmitted_queue,

retransmission_queue, receiver_queue, assembly_queue)

Initialize_state_variables(vt_s, vt_ms, vt_dat,

vt_sdu, vt_pu, vt_a, vr_r, vr_h, vr_mr)

end_state:=NULL

1_TimerInit

[image: image41.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_TimerInit(52)

1_TimerInit

Reset(Timer_Status_Periodic)

status_periodic_active:=NO

Reset(Timer_Poll_Periodic)

poll_periodic_active:=NO

Reset

(Timer_Poll)

poll_active

:=NO

Reset

(Timer_EPC)

epc_active

:=NO

2_TimerInit

[image: image42.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 2_TimerInit(52)

2_TimerInit

Reset(Timer_Status_Prohibit)

status_prohibit_active:=NO

rst_active

Reset

(Timer_RST)

rst_active

:=NO

end_state

Set(NOW+timer_durations!rst,

Timer_RST)

rst_active

:=YES

Reset_pendingAcknowledged_data_transfer_readyNull

YES

RST

ACK

NULL

NO

[image: image43.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_Null(52)

Null

Crlc_amconfig.req(e_r, logical_channel,

poll_triggers, status_triggers, timer_durations,

protocol_parameters, discard, ciphering_mode,

ciphering_key, ciphering_sn, pdu_size, pu_size)

e_r

transmit_window:=protocol_parameters!window_size,

receive_window:=protocol_parameters!window_size

vt_ms:=vt_a+transmit_window,

vr_mr:=vr_r+receive_window

poll_triggers(TIMER_BASED)

Set(NOW+timer_durations!poll_periodic,

Timer_Poll_periodic)

poll_periodic_active:=YES

status_triggers(TIMER_BASED)

Set(NOW+timer_durations!status_periodic,

Timer_Status_periodic)

status_periodic_active:=YES

-Acknowledged_data_transfer_ready

ESTABLISH

RELEASE

YES

NO

YES

NO

[image: image44.emf]

[image: image45.emf]

[image: image46.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_RlcAmDataReq(52)

Acknowledged_data_transfer_ready

Rlc_AmData.req(sdu, cnf, mui)

discard

(TIMER_BASED)

Set(NOW+timer_durations!discard,

Timer_Discard(mui))

Sdu_am_segmentation(sdu, n_pdu, pdus,

protocol_parameters, cnf, mui)

vt_sdu

:=vt_sdu+1

poll_triggers(EVERY_POLL_SDU)

vt_sdu=protocol_parameters!poll_sdu

vt_sdu:=0

pdus(n_pdu)!p

:=1

n_pdu=0

-2_RlcAmDataReq

YES

NO

YES

NO

YES

NO

YESNO

[image: image47.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 2_RlcAmDataReq(52)

2_RlcAmDataReq

i:=1

amd_pdu:=pdus(i)

Place_in_queue(

am_queue, amd_pdu)

AmdPduQueuedUp

TO SELF

i<n_pdu

i:=i+1

-

YES

[image: image48.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_AmdPduQueuedUp(52)

Acknowledged_data_transfer_ready

AmdPduQueuedUp

Check_if_queue_empty(

retransmission_queue, empty)

empty

Check_if_queue_empty

(am_queue, empty)

empty

Read_pdu(am_queue,

amd_pdu, n_pu)

amd_pdu!sn<=vt_ms

AmdPduQueuedUp

TO SELF

poll_win:=(1-(vt_ms-amd_pdu!sn)

/transmit_window)*100

Remove_from_queue(

am_queue, amd_pdu)

vt_pu:=

vt_pu+n_pu

--2_AmdPduQueuedUp6_AmdPduQueuedUp

YES

NO

NO

YES

NOYES

[image: image49.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 2_AmdPduQueuedUp(52)

2_AmdPduQueuedUp

Check_ipiggyback

(amd_pdu, piggyback)

piggyback

status_triggers

(STATUS_PROHIBIT)

Set(NOW+

timer_durations!status_prohibit,

Timer_Status_Prohibit)

status_prohibit_active

:=YES

status_triggers

(EPC)

Set(NOW+timer_durations!epc,

Timer_EPC)

epc_active

:=YES

3_AmdPduQueuedUp

YES

YES

YES

NO

NO

NO

[image: image50.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 3_AmdPduQueuedUp(52)

3_AmdPduQueuedUp

poll_triggers(POLL_PROHIBIT)

poll_triggers(LAST_PU_IN_BUFFER)

Check_if_queue_empty(am_queue, empty)

empty

poll_triggers(POLL_WINDOW)

poll_win>=

protocol_parameters!poll_window

poll_triggers(EVERY_POLL_PU)

vt_pu=protocol_parameters!poll_pu

amd_pdu!p:=1

poll_triggered

:=NO

4_AmdPduQueuedUp

amd_pdu!p:=0

5_AmdPduQueuedUp

NO

YES

NO

YES

NO

YES

YES

NO

NO

YES

NO

YES

NO

YES

[image: image51.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 4_AmdPduQueuedUp(52)

4_AmdPduQueuedUp

Transmit_amd_pdu(amd_pdu, logical_channel)

amd_pdu!p=1

polled_sn:=

amd_pdu!sn

poll_active

Set(NOW+

timer_durations!poll,

Timer_Poll)

Set(NOW+timer_durations!poll,

Timer_Poll)

poll_active

:=YES

amd_pdu!p:=0

vt_s:=

vt_s+n_pu

Increment_vtDAT(amd_pdu)

Place_in_queue(transmitted_queue,

amd_pdu)

-

YES

NO

YES

NO

[image: image52.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 5_AmdPduQueuedUp(52)

5_AmdPduQueuedUp

amd_pdu!p

=1

poll_triggers(LAST_PU_IN_BUFFER)

Check_if_queue_empty(am_queue, empty)

empty

poll_triggers(POLL_WINDOW)

poll_win>=

protocol_parameters!poll_window

poll_triggers(EVERY_POLL_PU)

vt_pu=protocol_parameters!poll_pu

amd_pdu!p:=0

poll_triggered

:=YES

4_AmdPduQueuedUp

amd_pdu!p:=0

poll_triggered

:=NO

NO

YES

NO

YES

NO

YES

YES

NO

NO

YES

NO

YES

NO

YES

[image: image53.emf]

[image: image54.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 7_AmdPduQueuedUp(52)

7_AmdPduQueuedUp

poll_triggers(

LAST_PU_IN_RETRANSBUFFER)

Check_if_queue_empty(

retransmission_queue, empty)

empty

poll_triggers(POLL_PROHIBIT)

poll_prohibit_active

poll_triggered

:=YES

amd_pdu!p:=1,

polled_sn:=amd_pdu!sn

poll_active

Set(NOW+

timer_durations!poll,

Timer_Poll)

Set(NOW+timer_durations!poll,

Timer_Poll)

poll_active

:=YES

Transmit_amd_pdu(amd_pdu,

logical_channel)

Increment_vtDAT(amd_pdu)

amd_pdu!p:=0

Place_in_queue(

transmitted_queue, amd_pdu)

-

YES

NO

YES

NO

YES

NO

YES

NO

YESNO

[image: image55.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_StatusPdu(52)

Acknowledged_data_transfer_ready1_StatusPdu

StatusPdu

(status_pdu)

poll_active

Contains_polledSN

(polled_sn, status_pdu, contains)

contains

Reset

(Timer_Poll)

poll_active

:=NO

i:=1,

sn_ack:=0

stat_pdu!sufis(i)!typ

1_Window1_List1_Mrw1_Bitmap1_Ack1_Rlist2_StatusPdu

YES

NO

YES

NO

WINDOWLISTMRWBITMAPACKRLISTNO_MORE

[image: image56.emf]

[image: image57.emf]

[image: image58.emf]

[image: image59.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_StatusPduAck(52)

1_Ack

sn_ack:=status_pdu!sufis(i)!lsn

i:=i+1

2_StatusPdu

[image: image60.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_StatusPduWindow(52)

1_Window

transmit_window:=status_pdu!sufis(i)!wsn

vt_ms:=vt_a+transmit_window

i:=i+1

1_StatusPdu

[image: image61.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_StatusPduMrw(52)

1_Mrw

vr_r:=status_pdu!sufis(i)!mrw_sn

vr_h<vr_r

vr_mr:=vr_r+receive_window

vr_h:=vr_r,

vr_mr:=vr_r+receive_window

Remove_all_below_mrw_from_queue(

receiver_queue, assembly_queue, vr_r)

i:=i+1

1_StatusPdu

NOYES

[image: image62.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 2_StatusPdu(52)

2_StatusPdu

sn_ack=0

Remove_all_below_ack_and_get_muis(

transmitted_queue, sn_ack, tot_mui, muis)

tot_mui=0

j:=1

muis(j)=0

cnf

Rlc_AmData.cnf(muis(j))

VIA Am

Reset(Timer_Discard(muis(j)))

j=tot_mui

j:=j+1

Update_state_variables(vt_a, vt_ms, transmit_window,

transmitted_queue, retransmission_queue)

-

NO

YES

NO

YES

NO

YES

YES

NO

NO

YES

[image: image63.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_TimerPoll(52)

Acknowledged_data_transfer_ready

Timer_Poll

poll_prohibit_active

poll_triggered:=YES,

poll_active:=NO

poll_triggered:=NO,

poll_active:=NO

Check_if_queue_empty(

retransmission_queue, empty)

empty

Set_poll_flag

(retransmision_queue)

Check_if_queue_empty(

am_queue, empty)

empty

Set_poll_flag

(am_queue)

--2_TimerPoll

YES

NO

NO

YES

NO

YES

[image: image64.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 2_TimerPoll(52)

2_TimerPoll

Check_if_queue_empty(

transmitted_queue, empty)

empty

Remove_identified_from_queue

(transmitted_queue,

polled_sn, amd_pdu)

amd_pdu!p:=1

Place_in_queue(

retransmission_queue,

amd_pdu)

AmdPduQueuedUp

TO SELF

-

NO

YES

[image: image65.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_TimerPollProhibit(52)

Acknowledged_data_transfer_ready

Timer_Poll_Prohibit

poll_prohibit_active:=NO

poll_triggered

poll_triggered

:=NO

Check_if_queue_empty(

retransmission_queue, empty)

empty

Check_if_queue_empty

(am_queue, empty)

empty

Set_poll_flag

(retransmission_queue)

Set_poll_flag

(am_queue)

-2_TimerPoll

YES

NO

YESNO

NO

YES

[image: image66.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_TimerStatusProhibit(52)

Acknowledged_data_transfer_ready

Timer_Status_Prohibit

status_prohibit_active:=NO

-

[image: image67.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_TimerEpc(52)

Acknowledged_data_transfer_ready

Timer_EPC

Estimate_number_of_pus(n_pu_per_tti)

vr_ep:=vr_ep-n_pu_per_tti

vr_ep=0

epc_active

:=NO

status_triggered

Check_status_creation(vr_r, vr_h,

receiver_queue, create_status)

create_status

1_TimerStatus-

NO

YES

NO

YES

YES

NO

[image: image68.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_TimerStatusPeriodic(52)

Acknowledged_data_transfer_ready

Timer_Status_Periodic

status_prohibit_active

epc_active

status_triggered

:=YES

-

Create_status(vr_r, vr_h, receiver_queue,

status_pdu, tot_sufi, vr_ep)

status_pdu!pa

:=0

Place_piggyback_in_queue(am_queue,

retransmission_queue, status_pdu,

tot_sufi, possible)

possible

Transmit_status(status_pdu,

logical_channel)

status_triggers

(STATUS_PROHIBIT)

Set(NOW+timer_durations!status_prohibit,

Timer_Status_Prohibit),

status_prohibit_active:=YES

status_triggers

(EPC)

Set(NOW+timer_durations!epc,

Timer_EPC),

epc_active:=YES

--

1_TimerStatus

NO

YES

NO

YES

YES

NO

NO

YES

YES

[image: image69.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_TimerPollPeriodic(52)

Acknowledged_data_transfer_ready

Timer_Poll_Periodic

poll_prohibit_active

poll_triggered

:=YES

poll_triggered

:=NO

Check_if_queue_empty(

retransmission_queue, empty)

empty

Set_poll_flag

(retransmision_queue)

Check_if_queue_empty(

am_queue, empty)

empty

Set_poll_flag

(am_queue)

Set(NOW+timer_durations!poll_periodic,

Timer_Poll_Periodic)

--2_TimerPollPeriodic

YES

NO

YES

NO

YES

[image: image70.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 2_TimerPollPeriodic(52)

2_TimerPollPeriodic

Check_if_queue_empty(

transmitted_queue, empty)

empty

Remove_identified_from_queue

(transmitted_queue,

polled_sn, amd_pdu)

amd_pdu!p:=1

Place_in_queue(

retransmission_queue,

amd_pdu)

AmdPduQueuedUp

TO SELF

Set(NOW+timer_durations!poll_periodic,

Timer_Poll_Periodic)

-

NO

YES

[image: image71.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_TimerDiscard(52)

Acknowledged_data_transfer_ready

Timer_Discard(mui)

Remove_mui_from_queue(mui, transmitted_queue,

retransmission_queue)

Update_state_variables(vt_a, vt_ms, transmit_window,

transmitted_queue, retransmission_queue)

discard(EXPLICIT)

status_pdu!pa:=0,

status_pdu!sufi(1)!typ:=MRW,

status_pdu!sufi(1)!mrw_sn:=vt_a,

tot_sufi:=1

Place_piggyback_in_queue(am_queue,

retransmission_queue, tot_sufi,

status_pdu, possible)

possible

Transmit_status(status_pdu, logical_channel)

-

YES

NO

YES

NO

[image: image72.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 1_AmdPdu(52)

1_AmdPduAcknowledged_data_transfer_ready

AmdPdu(amd_pdu)

amd_pdu!li=PIGGYBACKED

Extract_status_pdu(amd_pdu, status_pdu)

StatusPdu(status_pdu)

TO SELF

Extract_pus(amd_pdu, pus, n_pu)

i:=0

i>n_pu

i:=i+1

4_AmdPdu2_AmdPdu

YES

NO

NO

YES

[image: image73.emf]

[image: image74.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 3_AmdPdu(52)

3_AmdPdu

Reassemble_am_pu(

assembly_queue, am_pu,

sdus, n_sdu, complete)

complete

j:=1

sdu:=sdus(j)

Rlc_AmData.ind(sdu)

VIA Am

j=n_sdu

j:=j+1vr_r:=vr_r+1

Exists_in_receiver_queue(

vr_r, receiver_queue, exists)

exists

1_AmdPdu

Remove_identified_from_queue(

receiver_queue, vr_r, am_pu)

YES

NO

NO

YES

NO

YES

[image: image75.emf]

[image: image76.emf];

SIGNALSET

 Crlc_amconfig.req,

 Crlc_Status.ind,

 Reset_am,

 Rlc_AmData.req,

 Rlc_AmData.ind,

 Rlc_AmData.conf,

 AmdPduQueuedUp,

 StatusPdu,

 AmdPdu,

 Reset_am_ack;

Virtual Process Type Acknowledged_connection 5_AmdPdu(52)

5_AmdPdu

am_pu!sn

<vr_r

am_pu!sn

=vr_h

Place_in_queue(

receiver_queue, am_pu)

vr_h:=vr_h+1

1_AmdPdu

vr_h<

am_pu!sn

Exists_in_receiver_queue(

am_pu!sn, receiver_queue, exists)

exists

Place_in_queue(

receiver_queue, am_pu)

1_AmdPdu6_AmdPdu1_AmdPdu

NO

YES

NO

NO

NO

YES

YES

YES

[image: image77.emf]

[image: image78.emf]

[image: image79.emf]

[image: image80.emf]

