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1. Introduction
UCI transmission in UL MIMO scenarios was discussed in the last few meetings. For multiple transport blocks, Rel-10 resource size formula was agreed for HARQ-ACK/RI transmission. To resolve the issues of RM coding rate, a minimal resource size Qmin was introduced for O>2 cases. The corresponding agreements are shown as follows:
· A standard-based solution for resolving issues with optimistic code rates for high payloads/spectral efficiencies is introduced. 
· Working assumption is to make sure that the number of REs is not smaller than Qmin. 

· Q’ = max(Q’’, Q’min), where Q’’ is
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· Q’min is determined as a function of modulation order, and/or number of layers, and/or HARQ-ACK/RI payload. 
· The following is agreed as working assumption.
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If O<=2, Q’min = O,
· else,                                  and                                Here,           is the modulation order for CW (x).
· The part of agreement regarding the case of O>11 can be revisited if single RM coding is not agreed in the CA session for O>11.
During the email discussion, the issues of backward compatibility to Rel-8 were raised, and some solutions were proposed by companies. In this contribution, we discuss the resource size for HARQ-ACK/RI transmission taking backward compatibility and current agreements into count.
2. Discussion
2.1. On the application scenarios of 
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During the email discussion after RAN1#63, it was agreed that the application scenarios of Q’min should be carefully revisited for backward compatibility, and the candidates included:
1) Alt1: Only when two transport blocks are transmitted as described in current CR [1].
2) Alt2:  multiple antenna ports are configured.

3) Alt3: When multiple DL CCs are configured.

4) Alt4: When O>4 for TDD or O>2 for FDD.

5) Alt5: When two or more layers are transmitted.
In case of two transport blocks in uplink, it is obvious that Q’min is necessary, and there is no backward compatibility issue. In this section, we focus on the case of one transport block.
For one transport block, the number of symbols for HARQ-ACK/RI can be calculated as follows [1]:
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Generally, if the maximal resource size is not reached, the coding rate of UCI on each layer can be approximately expressed as:
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Where 
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can be obtained from the MCS index in PDCCH for the transport block according to Table 7.1.7.2.1-1 and Table 7.1.7.2.2-1 in [2], and 
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is obtained from the same UL grant according to the MCS index and Table 8.6.1-1 in [2]. We can conclude from the expression that the coding rate is hardly affected by the size of resource bits O. Furthermore, for one fixed 
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, the coding rate can be calculated for each value of NPRB(from which 
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is obtained) and each ITBS in Table 7.1.7.2.1-1 and Table 7.1.7.2.2-1 for single layer and dual layers transmission. 
We study the distribution of the coding rates calculated from all possible NPRB and ITBS in Table 7.1.7.2.1-1 and Table 7.1.7.2.2-1, and parts of the results are shown in Figure1-2 (taking RI as example). 
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Figure 1. Approximate coding rate of RI with single layer transmission (
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Figure 2. Approximate coding rate of RI with dual layers transmission (
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It is shown in figure1 that the coding rate is almost surely larger than 0.75 for single layer transmission, and moreover, with
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 the coding rate is almost surely smaller than 0.6. The same observation can be made even for larger payloads. It is further noted that for ACK/NAK transmission on PUSCH, the minimum value of 
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 is 2, leading to even smaller coding rate than shown in Figure 1
Observation1：For single layer transmission, the coding rate of HARQ-ACK/RI is similar to that in Rel-8 and 
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is not needed, even with larger payload.
For the case of two layers transmission (which only occurs in retransmission) in Figure 2, we can find that the coding rate of RI on each layer is approximately twice that of single layer transmission. Especially with
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, nearly half of the coding rate is larger than 1. As a result, there will be loss of information during channel coding. To avoid this issue with small value of 
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, a minimal resource size should be introduced. 
Obsevation2：For dual layers transmission, the issue of RM coding rate should be optimized.
In summary, the coding rate of ACK/RI is more related to the number of transmission layers and the value of
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. Hence, Alts 1 – 4 are not appropriate to solve the issues of RM coding rate. Hence, we prefer Alt 5.
2.2. The formula of 
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for multiple layers transmission
It was agreed in the previous meetings that the minimal resource for RM coding was
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, with which the coding rate of HARQ-ACK/RI bits on each layer is no more than 0.5. This formula was obtained according to the transmission performance and coding rate on a single layer, based on the assumption of application to both single layer and multiple layers transmission. However, it had been shown in section 2.1 that 
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 is only necessary for multiple layers transmission. In this case, the formula needs to be revisited, and the following issues should be considered:

· As shown in Figure.1, the maximal coding rate of ACK/RI in Rel-8 is nearly 0.75;
· During the discussion on the resource formula for multiple CWs transmission, aggregated spectral efficiency (
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) was used for 
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. The resource size can be minimized and thus the throughput could be maximized.
· For multiple layers transmission, there is always multiple diversity gain from multiple layers.
Similar to the resource formula for multiple CWs transmission, joint spectral efficiency/throughput/BER performance on all layers, but not on a single layer, should be considered for
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. The restriction on coding rate on each layer should be reconsidered for application of multiple layers transmission taking diversity gain and backward compatibility into count. Therefore, to reduce the resource for HARQ/RI and then improve the throughput of data transmission especially for high rank transmission, the formula of 
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 can be modified to ensure that the coding rate per layer is no more than 0.75, that is, 
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. With multiple diversity gain, this restriction can still ensure that the transmission performance of HARQ/RI is not worse than that of Rel-8, and less resource is needed comparing with the current formula.
3. Conclusions

In this contribution, we discussed the scenarios where there is necessity to introduce 
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 for RM coding rate optimization, and also revisited the formula of 
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for cases of multiple layers transmission. From the above analysis, the selection between Rel-8 formula and Rel-10 formula with 
[image: image33.wmf]min

Q

¢

can follow the following principles:
· For single layer transmission, the Rel-8 formula without 
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 can be reused no matter how many UCI bits are transmitted and how many antenna ports are configured in UL.
· 
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is necessary for UL multi-layer transmission, i.e. multiple transport blocks or one transport block mapped two layers.
· The restriction on coding rate per layer can be relaxed considering backward compatibility and diversity gain, and 
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 is a better solution with less resource overhead and better throughput performance comparing with the current formula.
The proposed modification in corresponding specification is given in appendix.
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5. Annex: Text Proposal for Channel coding of control information in TS 36.212[1]
----------------------------------------------         Start of Text Proposal        ---------------------------------------

5.2.2.6 
Channel coding of control information
Control data arrives at the coding unit in the form of channel quality information (CQI and/or PMI), HARQ-ACK and rank indication. Different coding rates for the control information are achieved by allocating different number of coded symbols for its transmission. When control data are transmitted in the PUSCH, the channel coding for HARQ-ACK, rank indication and channel quality information 
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 is done independently. 

For TDD, two HARQ-ACK feedback modes are supported by higher layer configuration.

· HARQ-ACK bundling, and 

· HARQ-ACK multiplexing 

For TDD HARQ-ACK bundling, HARQ-ACK consists of one or two bits information.  For TDD HARQ-ACK multiplexing, HARQ-ACK consists of between one and four bits of information and the number of bits is determined as described in section 7.3 of [3].

When the UE transmits HARQ-ACK bits or rank indicator bits for a single cell, it shall determine the number of coded modulation symbols per layer 
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 for HARQ-ACK or rank indicator as
For the case when only one transport block is transmitted in an UL cell: 
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where 
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 is the number of HARQ-ACK bits or rank indicator bits, 
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 is the number of layers onto which the transport block is mapped, 
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 is the modulation order of the transport block, 
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 is the scheduled bandwidth for PUSCH transmission in the current sub-frame for the transport block, expressed as a number of subcarriers in [2], and 
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is the number of SC-FDMA symbols per subframe for initial PUSCH transmission for the same transport block, respectively, given by 
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 is equal to 1 if UE is configured to send PUSCH and SRS in the same subframe for initial transmission or if the PUSCH resource allocation for initial transmission even partially overlaps with the cell-specific SRS subframe and bandwidth configuration defined in section 5.5.3 of [2]. Otherwise 
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 are obtained from the initial PDCCH for the same transport block. If there is no initial PDCCH with DCI format 0 for the same transport block, 
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 shall be determined from:

· the most recent semi-persistent scheduling assignment PDCCH, when the initial PUSCH for the same transport block is semi-persistently scheduled, or, 

· the random access response grant for the same transport block, when the PUSCH is initiated by the random access response grant.
For the case when two transport blocks are transmitted in an UL cell:
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where 
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 is the number of HARQ-ACK bits or rank indicator bits, 
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 are the scheduled bandwidths for PUSCH transmission in the initial sub-frame for the first and second  transport block, respectively, expressed as a number of subcarriers in [2], and 
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are the number of SC-FDMA symbols per subframe for initial PUSCH transmission for the first and second transport block, respectively, given by 
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 is equal to 1 if UE is configured to send PUSCH and SRS in the same subframe for initial transmission of transport block “x” or if the PUSCH resource allocation for initial transmission of transport bock “x” even partially overlaps with the cell-specific SRS subframe and bandwidth configuration defined in section 5.5.3 of [2]. Otherwise 
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 are obtained from the initial PDCCH for the corresponding transport block. If there is no initial PDCCH with DCI format 0 or 4 for the same transport block, 
[image: image78.wmf]}

2

,

1

{

,

)

(

=

-

x

M

x

initial

PUSCH

sc

, 
[image: image79.wmf]C

, and 
[image: image80.wmf]}

2

,

1

{

,

)

(

=

x

K

x

r

 shall be determined from:

· the most recent semi-persistent scheduling assignment PDCCH, when the initial PUSCH for the same transport block is semi-persistently scheduled, or, 
· the random access response grant for the same transport block, when the PUSCH is initiated by the random access response grant.
----------------------------------------------         End of Text Proposal        ------------------------------------------
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