
3GPP TSG RAN WG1 meeting #62bis

 R1-105247
Xi’an, China, Oct. 11-15, 2010
Agenda Item:
6.2.1.1
Source:
Huawei, HiSilicon
Title:
A/N coding schemes for large payload using DFT-S-OFDM
Document for:
Discussion and decision
1 Introduction
As to the coding scheme for PUCCH format DFT-S-OFDM, it was agreed in RAN1 #62 meeting that [1]:
· For DFT-S-OFDM with A/N payload size less than or equal 11 bits, the (32, O) RM code from Rel-8 with circular buffer rate matching is reused.

· A/N bit mapping is same as in Rel-8.
However, the payload size of A/N bits could be more than 11 bits when different Uplink-Downlink configurations are considered in TDD, e.g., 5CCs and each with 4DL: 1UL subframe configuration leads to 20 A/N bits if spatial bundling only is allowed [2]. The coding scheme for such cases has not been discussed. In this contribution, we will present our consideration on the coding scheme for A/N payload size larger than 11 bits.
2 Candidate coding schemes and comparison
Generally, there are two natural candidate coding schemes considered for such range of payload size: TBCC (Tail Biting Convolutional Code) and RM-based code. In the following, we will give a detailed investigation and comparison between these two schemes.
2.1 TBCC
TBCC was specified in Rel-8, it is usually used to encode medium length of information bits, such as DCI format information. Thus, it could be an option to encode more than 11 bits into 48 bits. However, since RM-based code has been agreed for DFT-S-OFDM with no more than 11 bits, two kinds of coding/decoding algorithms need to be implemented for DFT-S-OFDM if TBCC is further adopted for the case with more than 11 bits. This will increase the complexity of implementation, especially to the UEs.
Furthermore, although it has been agreed to determine the feedback information bits according to the configured CCs [1], eNB can use real scheduling information to improve the decoding performance, i.e., to utilize the known bits for the carriers not scheduled. But, as to TBCC, it is not very easy to do so due to its non-linear coding/decoding process.
2.2 RM-based code
One reason to adopt (32, O) RM code for no more than 11 bits is that it already existed in Rel-8 specification and the performance is acceptable. Unfortunately, for payload size larger than 11 bits, there is no such RM code specified in Rel-8 and designing a new RM code will introduce additional work to both standard and implementation. For example, if 20 A/N bits is encoded by a newly designed RM code, 2^20 (over million) searching over all possibilities is needed if ML decoding algorithmis used such as joint Data+RS scheme [3, 4]. However, to unify the implementation of encoding/decoding of DFT-S-OFDM, it is still desired to adopt RM-based code for more than 11 bits if available. In addition, it is much easier and natural for eNB to use scheduling information to improve decoding performance for RM-based code due to its linear structure.
During the offline discussion after RAN1 #62 meeting, it was mentioned to reuse RM-based code by partitioning ACK/NACK bits into two blocks with smaller payload size firstly and then encoding each block separately into 24 bits by (32, O) code with puncturing, as shown in figure 1. ML decoding algorithm scheme can be then applied separately to each code block, and thus the searching attempts can be reduced dramatically to 2^11.

[image: image1.emf]ACK

bits

Partition

into 2

blocks

block 1

block 2

(32,O) with

puncturing

into 24 bits

(32,O) with

puncturing

into 24 bits

QPSK

modulation

QPSK

modulation

P0),P(1),…,P(11)

Q(0),Q(1),…,Q(11)

P(0),

Q(0),

P(1),

Q(1),

…

P(5),

Q(5)

P(6),

Q(6),

P(7),

Q(7),

…

P(11),

Q(11)

12-point

DFT

12-point

DFT

Format 3

slot 0

Format 3

slot 1

Tx

Tx

Figure 1 Illustration of RM-based coding scheme for more than 11 bits
In this approach, to obtain frequency diversity, modulated symbols from a same code block need to be distributed into two slots. One natural way is collecting modulated symbols from the two code blocks alternatively before DFT as shown in figure 1.
2.3 Performance comparison
Besides above analysis, we also present some performance comparison between TBCC and RM-based code, where the partitioning operation in RM-based code is as follows:
· Payload size of 12, 16, 20 bits are partitioned into 2x6, 2x8, 2x10 bits respectively.
More detailed simulation assumption is presented in Appendix.
[image: image2.emf]-6-5-4-3-2-101234

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

SNR (dB)

BER

performance of (ACK->NACK/DTX) and (NACK->ACK),ETU,3km/h,12bits

ACK->NACK/DTX, double codebook

ACK->NACK/DTX,R8 TBCC

NACK->ACK, double codebook

NACK->ACK, R8 TBCC

[image: image3.emf]-6-5-4-3-2-101234

10

-4

10

-3

10

-2

10

-1

10

0

SNR (dB)

BER

performance of (ACK->NACK/DTX) and (NACK->ACK),ETU,3km/h,16bits

ACK->NACK/DTX, double codebook

ACK->NACK/DTX,R8 TBCC

NACK->ACK, double codebook

NACK->ACK, R8 TBCC

[image: image4.emf]-6-4-20246

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

SNR (dB)

BER

performance of (ACK->NACK/DTX) and (NACK->ACK),ETU,3km/h,20bits

ACK->NACK/DTX, double codebook

ACK->NACK/DTX,R8 TBCC

NACK->ACK, double codebook

NACK->ACK, R8 TBCC

	Payload
	12 bits
	16 bits
	20 bits

	TBCC
	1.2
	2.4
	4.5

	RM-based code
	-1.8
	0.2
	1.2

	Gain of RM-based code over TBCC
	3
	2.2
	3.3

Table 1 Respective required SNR(dB) for TBCC and RM-based code
2.4 Summarization
Based on the analysis and performance presented above, we give a comprehensive comparison between TBCC and RM-based code as in the following table:
	Dimension
	TBCC
	RM-based code

	Performance
	Not good
	Good, more than 2dB gain over TBCC

	Implementation complexity
	Higher.
PUCCH Format 3 needs to implement 2 different kinds of coding/decoding algorithms.
	Lower.
PUCCH Format 3 only needs to implement 1 kind of coding/decoding algorithm.

	Use fixed states from scheduling information to aid decoding
	Not easy,
due to non-linear structure
	Easy,
due to linear structure

Table 2 Comparison between TBCC and RM-based code
3 Conclusion
In this contribution, we discussed the coding schemes for ACK/NACK transmission of more than 11 bits using DFT-S-OFDM. Based on the discussion, we propose:
· Proposal: For DFT-S-OFDM with A/N payload size larger than 11 bits, double RM code is adopted.
· ACK/NACK information bits are partitioned into two blocks;
· Each block is encoded into 24 bits by the Rel-8 (32, O) RM code with the last 8 coded bits punctured;
· The coded bits from each code block are modulated by QPSK;
· The modulated symbols are collected from the two code blocks alternatively before DFT.

References

[1] Chairman’s Notes RAN1 #62 - final.
[2] R1-105246, “ACK/NACK transmission schemes for TDD in LTE-A”, Huawei, HiSilicon.
[3] R1-103468, “Performance evaluation of UL ACK/NACK multiplexing methods in LTE-A”, CATT.

[4] R1-103367, “Evaluation of Carrier Aggregation PUCCH Proposals with Advanced Receivers”, Ericsson, ST-Ericsson.

Appendix
Table 1 Simulation Assumptions

	Parameter
	Value

	Carrier frequency
	2GHz

	Channel model
	ETU/5MHz,

	Velocity
	3km/h

	Frequency hopping
	At slot boundary

	Antenna configuration
	1x2

	RX antenna correlation
	Uncorrelated

	CP
	Normal

	Signal bandwidth
	180kHz

	RX false alarm detection threshold
	
[image: image5.wmf](

)

(

)

2

10

bits)

ACK/NAK

(

#

 DTX

PUCCH

#

bits

ACK

false

#

bits)

ACK

 DTX

Prob(PUCCH

-

£

´

=

®

Note: One error for each falsely generated ACK bit

	Noise estimation
	Ideal

	Number of UEs
	1

	Number of PRBs for PUCCH
	1

	
[image: image6.wmf]PUCCH

shift

D

	2

	Receiver Type
	For RM-based code: separate ML detection (Joint Data + RS) on each code block
For TBCC: Viterbi decoding

_1345615430.unknown

_1347367378.vsd
ACK bits

Partition into 2 blocks

block 1

block 2

(32,O) with puncturing into 24 bits

(32,O) with puncturing into 24 bits

QPSK modulation

QPSK modulation

P0),P(1),…,P(11)

Q(0),Q(1),…,Q(11)

P(0),
Q(0),
P(1),
Q(1),
…
P(5),
Q(5)

P(6),
Q(6),
P(7),
Q(7),
…
P(11),
Q(11)

12-point DFT

12-point DFT

Format 3 slot 0

Format 3 slot 1

Tx

Tx

_1345615429.unknown

