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1 Introduction 

In RAN1#60bis and RAN1#61, the following agreements have been made on power scaling with carrier aggregation [1][2][3]. 
· PUSCH with UCI is prioritized over PUSCH without UCI (i.e. power of PUSCH without UCI is scaled down first, maybe to zero)

i.e. Priority order is as follows:  PUCCH > PUSCH with UCI > PUSCH without UCI
· The UE shall scale the power of all PUSCHs without UCI equally.
Prioritization is regardless of same or different CCs.
In this contribution, we clarify some cases of power scaling and propose several options of power scaling on PUSCHs without UCI. 
2 Discussion
2.1 Cases of power scaling
For convenience the following definitions are defined [4].
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If the total transmit power exceeds the UE maximum transmit power, the power scaling problem can be described as:
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2.2 Equal power scaling on PUSCH without UCI
It is agreed that the UE shall scale the power of all PUSCHs without UCI equally. However, it is not clear that whether the “equal” power scaling is relative to the allocated transmission power after or before power truncation in the CC-specific PC formula as mentioned in [4]. There are two options for equal power scaling proposed in [4], in this contribution, the other two options are also proposed to apply power scaling on all PUSCHs without UCI to get better performance with less complexity. 
Option 1: after power truncation, the same scaling factor w is applied on all CCs carrying PUSCH with no UCI [4]:
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        where 
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This option is very simple, but the disadvantage is that the effective power reduction might be larger on those CCs for which the allocated transmission power exceeds the CC-specific maximum transmission power.
Option 2: ratio of power after scaling to the power before truncation is equal [4]. Then the rules are such that:
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where K is a constant value. Then solving above equations, the factor w can be calculated as that:
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However, the power scaling rule in (5) might in some cases result in a positive power scaling factor on one or several CCs. In this case, the factor
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 exceed CC-specific maximum transmission power. Therefore,
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in this case should be set to one and repeat the procedure of solving (5) until
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for all CCs [4]. 
Link adaptation at the eNodeB is typically performed assuming that the UE will transmit with the allocated transmission power P̃PUSCH,c, the block error rate (BLER) of this option is maintained as close as possible to the BLER target on all the CCs , but the complexity of option2 is larger than option1.
Option 3: in the first step, the power is scaled equally before truncation. In the second step, the power truncation is applied after scaling. The two steps must keep the following rules:
First set 
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· Step one : scale the power equally before truncation. Then the factor
[image: image15.wmf]c

w

is expressed as:
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· Step two: truncate the power after scaling. If for some CC 
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, then the power truncation results in
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and the CC’s power scaling is over. Then
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 is updated by 
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 and the procedure would go to step one. If for all remaining CCs 
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, the power scaling procedure could stop and the scaling factor is set to 
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From above steps, we could see that the power scaling is applied to all PUSCHs without UCI equally. The distribution of power after scaling, would be more balanced than option 1 among all PUSCHs without UCI. And the iteration algorithm reduces complexity compared with option2.
Option 4: equal power scaling is based on the type of CCs. In this approach, the CCs would be divided into two types.   
Type I CCs are the CCs for which the CC-specific PC formula is applied resulting in
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, those CCs belong to type II CCs .We denote the set of type I and type II CCs as 
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 respectively, and denote the total power before truncation as 
[image: image28.wmf]I

P

%

 and 
[image: image29.wmf]II

P

%

 respectively. The following procedures would distribute total power of each type of CCs in the sense that each type of CCs which is treated as a whole would be applied equal power scaling.
· Step one: distribute total power of each type of CCs by following rules:
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If 
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, then the distributed power would be adjusted as following rules:
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· Step two: apply equal power scaling on each type of CCs with the distributed power 
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Then the scaling factor of each type of CCs could be expressed as:

For type I CCs: 
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 and for type II CCs: 
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In option 4, The distribution of power after scaling could be balanced between type I and type II CCs. But the balance is that each type of CCs is treated as a whole. Therefore, option 4 has a few advantages comparing with option 2 and option 3, such as smaller complexity.
Selecting option 2 as an ideal baseline, we define a comparing factor as 
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 is smaller, option n would be better. Just as the simulation result shown, performance of option 3 is better than option 1 and 4, and less complexity than option2, and also option 4 would be better compared to option 1. as analyzed above, distribution of power after scaling should be as close as possible to the distribution 
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 of all PUSCHs without UCI are equal as much as possible, power after scaling would be closer to
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Simulation parameters:

· 
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= [0.6 0.7 0.7 0.8];

· 
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 is generated randomly.
3 Conclusions

In this contribution, we propose two options of power scaling on PUSCHs without UCI in power scaling:
Option 3: in the first step, scale the power before truncation equally. In the second step, truncate the power after scaling.
Option 4: equal power scaling is based on the type of CC. In this approach, the CCs would be divided into two types.
The proposed option3 simplifies the complexity of option 2 with the same performance, option 4 has the least complexity, but performance may be a little worse than option 3. 
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