
3GPP TSG RAN WG1 meeting #62,

R1-104498
Madrid, Spain, Aug. 23-27, 2010
Agenda Item:
6.2.2.1
Source:
Huawei
Title:
Linear block code construction for DFT-S-OFDM of PUCCH resilient to code modification
Document for:
Discussion and decision
1 Introduction
As to LTE-A UL ACK/NACK transmission format, it was agreed on RAN1 #61bis meeting that [1]:

· For Rel-10 UEs that support up to 4 A/N bits: PUCCH format 1b with channel selection

· For Rel-10 UEs that support more than 4 A/N bits: DFT-S-OFDM
Regarding the scheme with DFT-S-OFDM, a linear block code is used for joint coding of multiple ACK/NACK. In this contribution, we will study the generator matrix construction considering the case that only a part of component carriers are scheduled.
2 Implicit DTX Assumption

2.1 Generator Matrix issues when a part of component carriers are scheduled
Taking implicit DTX assumption as an example, Let the generator matrix be

[image: image1.wmf]]

,

,...,

,

,...,

,

[

2

1

2

2

1

2

2

1

N

N

i

i

v

v

v

v

v

v

V

-

-

=

 ,

[image: image2.wmf]i

i

b

b

2

1

2

,

-

are the bits to represent the ACK/NACK of two transport blocks of component carrier
[image: image3.wmf]i

,
[image: image4.wmf]5

,

4

,

3

,

2

,

1

=

i

.
[image: image5.wmf]0

=

k

b

denotes NACK,
[image: image6.wmf]1

=

k

b

 denotes ACK.
[image: image7.wmf]00

2

1

2

=

-

i

i

b

b

denotes (NACK, NACK)/DTX.
[image: image8.wmf]N

i

v

i

2

,...,

2

,

1

,

=

are the column vectors of the generator matrix
[image: image9.wmf]V

. The code words are

[image: image10.wmf]å

=

×

=

×

N

i

i

i

t

N

v

b

b

b

b

V

2

1

2

2

1

)

,...,

,

(

Observation 1: When some of component carriers are not scheduled, the corresponding bits are zeros, and hence the corresponding vectors
[image: image11.wmf]i

v

 are not used for encoding and decoding or are expurgated in other words.
For the same code word space, there are a lot of equivalent generator matrixes to generate the code word space. For example, the different generator matrix can be constructed by permuting the vectors of the original generator matrix to generate the same code word space as the original generator matrix.
When all configured component carriers are scheduled, the different equivalent generator matrices will not incur performance differences. However, when only a part of component carriers are scheduled, only part of vectors in the generator matrix are used for encoding and decoding, in other word, there will be code modification, and the performance maybe is different for different generator matrices.
Observation 2: For different generator matrices to generate the same code word space, the performance of the code word with expurgated generator matrix may be different when only a part of component carriers are scheduled.

Taking the (48, O) code generated by repeating (32, O) code in LTE as an example, suppose 4 component carriers are configured and component carriers 1, 2, 3 are scheduled, then the vectors with indices 1, 2, 3, 4, 5, 6 will be used for decoding since other vectors are not effective in the encoding. When component carriers 2, 3, 4 are scheduled, the vectors with indices 3, 4, 5, 6, 7, 8 will be used for decoding. According to [4], there is a performance difference between scheduling component carriers 1, 2, 3 and scheduling component carriers 2, 3, 4, which is about 0.5dB. When scheduling component carriers 1, 3, 4, there is performance loss 0.1dB. When scheduling 2 component carriers with indices 3, 4, there is a 0.2dB performance loss. Some other examples are in the case that 5 component carriers are configured according to [4].
The reason for the performance difference of the 3 CC cases above can be seen from the weight distribution of the code word space generated by the expurgated generator matrix.
Table 1 Weights of code word spaces

	Scheduled component carriers
	Vectors indices
	Performance loss
	Weights of code words with increasing order

	2,3,4
	[3,4,5,6,7,8]
	0.5
	16
	17
	17
	17
	17
	17
	17
	17
	18
	18
	18
	18
	18
	19
	

	1,2,4
	[1,2,3,4,7,8]
	0.2
	16
	17
	17
	17
	17
	18
	18
	18
	18
	18
	18
	19
	19
	20
	

	1,3,4
	[1,2,5,6,7,8]
	0.1
	17
	17
	17
	17
	18
	18
	18
	18
	18
	18
	19
	19
	21
	22
	

	1,2,3
	[1,2,3,4,5,6]
	0
	20
	22
	22
	22
	22
	22
	22
	22
	22
	23
	23
	23
	23
	23
	

The code word spaces generated by generator matrixes with vector indices [3, 4, 5, 6, 7, 8], [1, 2, 3, 4, 7, 8], have a lower weight distribution than the code word space generated by generator matrix with vector indices [1, 2, 5, 6, 7, 8], which explains the worse performance of [3, 4, 5, 6, 7, 8] and [1 ,2, 3, 4, 7, 8] than [1, 2, 5, 6, 7, 8].

2.2 Generator Matrix examples
A modified generator matrix is given to avoid the performance fluctuation issue as described in figure 1. An invertible matrix
[image: image12.wmf]P

in GF(2) will transform the generator matrix
[image: image13.wmf]V

to another generator matrix
[image: image14.wmf]W

such that
[image: image15.wmf]W

will generate the same code word space as
[image: image16.wmf]V

. The generator matrix is selected from the equivalent generator matrixes considering the case that only a part of component carriers are scheduled

[image: image17.emf]

Mapping Encoding Modulation

Code Word Bit vector

Generation Matrix W =V  P

A/N info

Figure 1 Mapping scheme with modified generator matrix
The code word is

[image: image18.wmf]t

N

t

N

b

b

b

P

V

b

b

b

W

)

,...,

,

(

)

,...,

,

(

2

2

1

2

2

1

×

×

=

×

,

[image: image19.wmf]P

is a
[image: image20.wmf]N

N

2

2

´

matrix.

2.2.1 Example for (32, O) code with repetition

Suppose the original generator vectors after rate matching are

[image: image21.wmf]10

2

1

,...,

,

v

v

v

,
which are generated by repeating the first 16 bits of the original (32, O) code. The length of the vectors is 48. The modified generator matrix can be as follows by computer search

[image: image22.wmf]]

,

,

,

,

,

,

,

[

8

5

4

3

1

7

6

4

2

4

3

2

5

6

2

6

5

4

3

2

1

4

2

5

1

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Denote the modified generator matrix by

[image: image23.wmf]]

,...,

,

[

10

2

1

w

w

w

,
we have that the minimum distance of the code word space generated by
[image: image24.wmf]]

,

,

,

,

,

[

6

5

4

3

2

1

w

w

w

w

w

w

 is 20 and the minimum distance of the code word space generated by
[image: image25.wmf]]

,

,

,

,

,

[

8

7

4

3

2

1

w

w

w

w

w

w

,
[image: image26.wmf]]

,

,

,

,

,

[

8

7

6

5

2

1

w

w

w

w

w

w

or
[image: image27.wmf]]

,

,

,

,

,

[

8

7

6

5

4

3

w

w

w

w

w

w

 is 18. Similarly, the minimum distances of the code word space corresponding to the case of scheduling 2 component carriers are not less than of the original generator matrix.
For 5 configured component carriers, the generator matrix for 5 configured component carriers includes the modified generator matrix for 4 configured component carriers as sub-matrix, for example, [image: image28.wmf]]

,

,

,

,

,

,

,

[

8

5

4

3

1

7

6

4

2

4

3

2

5

6

2

6

5

4

3

2

1

4

2

5

1

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

.Suppose
[image: image29.wmf]10

5

4

2

1

10

9

5

4

3

1

9

,

v

v

v

v

v

w

v

v

v

v

v

w

+

+

+

+

=

+

+

+

+

=

.
Then the code spaces generated by
[image: image30.wmf]}

5

,

4

,

3

,

2

,

1

{

,

,

,

,

],

,

,

,

,

,

,

,

[

2

1

2

2

1

2

2

1

2

2

1

2

Î

<

<

<

-

-

-

-

l

k

j

i

l

k

j

i

w

w

w

w

w

w

w

w

l

l

k

k

j

j

i

i

have the minimum distances which are larger than 15.
Table 2 Minimum distances of code word space in the case of code modification
	Scheduled CC indices
	Decoding basis indices
	Minimum distances of code word space for Original Matrix
	Minimum distances of code word space for Modified Matrix

	0,1
	1,2,3,4
	22
	22

	0,2
	1,2,5,6
	22
	22

	1,2
	3,4,5,6
	20
	20

	1,3
	1,2,7,8
	18
	19

	2,3
	3,4,7,8
	17
	19

	2,3
	5,6,7,8
	17
	19

	1,2,3
	1,2,3,4,5,6
	20
	20

	1,3,4
	1,2,5,6,7,8
	17
	18

	2,3,4
	3,4,5,6,7,8
	16
	18

	1,2,4
	1,2,3,4,7,8
	16
	18

	1,2,3,4
	1,2,3,4,5,6,7,8
	16
	16

	1,2,3,5
	1,2,3,4,5,6,9,10
	16
	16

	1,2,4,5
	1,2,3,4,7,8,9,10
	16
	16

	1,3,4,5
	1,2,5,6,7,8,9,10
	16
	16

	2,3,4,5
	3,4,5,6,7,8,9,10
	15
	16

2.3 Implementation complexity

The linear block code including the first order Reed-Muller code as sub-code can ensure using IFHT in the decoder to reduce the implementation complexity. When design the generator matrix IFHT in the decoder to reduce the complexity should also be considered. The code word is

[image: image31.wmf]t

N

t

N

b

b

b

P

V

b

b

b

W

)

,...,

,

(

)

,...,

,

(

2

2

1

2

2

1

×

×

=

×

,

[image: image32.wmf]P

is a
[image: image33.wmf]N

N

2

2

´

matrix.

If the original matrix
[image: image34.wmf]V

can ensure that the IFHT can be used for decoding, the decoding with generator matrix
[image: image35.wmf]P

V

W

×

=

will be implemented by decoding with matrix
[image: image36.wmf]V

 to get
[image: image37.wmf]t

N

b

b

b

P

)

,...,

,

(

2

2

1

×

 , and then an additional transform
[image: image38.wmf]1

-

P

is applied to get the final result. The increased complexity due to a modified generator matrix is very few since the additional transform will add at most 10*10 operations in binary field GF(2) for 10 bits decoding.
3 Explicit DTX Assumption

The above discuss takes implicit DTX assumption as an example. Regarding the explicit DTX assumption and the related solution in [6], the generator matrix selection adaptive to scheduling will have the similar issues. The solution in [6] uses the first m column vectors for encoding and decoding when a part of component carriers are scheduled. Hence the matrix is selected such that the code word spaces generated by vectors
[image: image39.wmf]N

m

w

w

w

m

,...,

2

,

1

],

,..,

,

[

2

1

=

have the larger minimum distance.
Suppose the original (48, A) code’s generator matrix is
[image: image40.wmf]]

,...,

,

[

A

2

1

v

v

v

 by repetition of (32, A) code in LTE, the weight distribution is as follows.
Table 3 Weight distribution of original (48, A) code

	A
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	dmin(A)
	48
	24
	23
	22
	22
	20
	16
	16
	15
	15

	Weight Enumerator (A)
	1
	2
	2
	1
	4
	1
	1
	2
	1
	3

Then one modified generator matrix
[image: image41.wmf]]

,

,

,

,

,

,

,

,

,

[

10

9

8

7

1

5

2

3

4

2

6

5

3

2

1

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

+

+

+

+

+

has the following weight distribution
Table 4 Matrix weight distribution of modified generator
	A
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	dmin(A)
	26
	26
	23
	23
	22
	20
	16
	16
	15
	15

	Weight Enumerator (A)
	1
	2
	2
	4
	3
	1
	1
	2
	1
	3

Obviously, the modified generator matrix is a litter better than the original generator matrix when first 1~5 vectors are used for encoding except the all “1” code word with weight 48. Both generation matrixes seem acceptable. Another example for the (48, A) code in TDD [3] can be found in appendix.
At afore-cited examples the generation matrix for at most 10 bits linear block coding is considered. It is easy to be extended to more than 10 bits.
4 Conclusion
In this contribution, we have discussed the generator matrix for coding schemes for DFT-S-OFDM. Based on the discussion, we propose:
Proposal 1: Select one generator matrix of linear block code from the set of equivalent generator matrixes such that the code word spaces corresponding to that only a part of component carriers are scheduled have a better performance always.
References

[1] Draft Report of 3GPP TSG RAN WG1 #61bis v0.1.0.
[2] 3GPP TS 36.212.
[3] 3GPP TS 25.222.
[4] R1-103508, “On ACK/NACK codebook performance for carrier aggregation”, Ericsson, ST-Ericsson.

[5]R1-081098, “Coding for CQI moved from PUCCH to PUSCH”, LG Electronics.
[6]R1-103886, “A/N Codebook Design for Carrier Aggregation using format 2 and DFT-S-OFDM”, Huawei
Appendix: another example for explicit DTX

Suppose the original (48, A) code’s generator matrix is
[image: image42.wmf]]

,...,

,

[

A

2

1

v

v

v

 in TDD [3], the weight distribution is as follows.

Table 4 Weight distribution of original (48, A) code

	A
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	dmin(A)
	26
	24
	24
	22
	22
	22
	18
	18
	18
	18

	Weight Enumerator (A)
	1
	1
	5
	1
	3
	9
	3
	8
	8
	18

Then the modified generator matrix
[image: image43.wmf]]

,

,

,

,

,

,

,

,

,

[

10

9

8

7

6

5

2

3

4

1

6

2

1

v

v

v

v

v

v

v

v

v

v

v

v

v

+

+

+

has the following weight distribution

Table 5 Matrix weight distribution of modified generator
	A
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	dmin(A)
	30
	30
	24
	24
	22
	22
	18
	18
	18
	18

	Weight Enumerator (A)
	1
	3
	3
	9
	3
	9
	3
	8
	8
	18

Obviously, the modified generator matrix is a litter better than the original generator matrix when first 1~5 vectors are used for encoding.

_1342619931.unknown

_1342620803.unknown

_1343029984.unknown

_1343137743.doc

[image: image1]

Mapping

Encoding

Modulation

Code Word

Bit vector

Generation Matrix W=V(P

A/N info

_1343204158.unknown

_1343030026.unknown

_1342622886.unknown

_1342622896.unknown

_1342621611.unknown

_1342621623.unknown

_1342622786.unknown

_1342621538.unknown

_1342619979.unknown

_1342620296.unknown

_1342619966.unknown

_1342524527.unknown

_1342592252.unknown

_1342599134.unknown

_1342608760.unknown

_1342609309.unknown

_1342608473.unknown

_1342593384.unknown

_1342525862.unknown

_1342591378.unknown

_1342591981.unknown

_1342525920.unknown

_1342524530.unknown

_1342524172.unknown

_1342524521.unknown

_1342524524.unknown

_1342524518.unknown

_1342508779.unknown

_1342508821.unknown

_1342524126.unknown

_1342508805.unknown

_1342508761.unknown

_1341147523.unknown

