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1. Introduction
Implementing two-stage feedback for Rel-10 downlink MIMO is agreed in RAN1#60bis [1] and RAN1#61 [2]. Various two-stage feedback solutions have been proposed in recent LTE-A discussions. Basically, there are three two-stage feedback approaches:
1) Adaptive feedback (see for example [3]), i.e. spatial correlation matrix based feedback: The main idea of this approach is to match the quantization codebook to specific propagation scenario. 
2) Differential feedback (see for example [4]): 
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 targets for aligning the signals towards the direction of the user, while  is a diagonal matrix performing one-step differential.

3) Cluster based feedback [5]: In this approach, 
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 is a block diagonal matrix denoting a cluster composed of 4 DFT beams chosen over wideband and 
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 executes beam selection and co-phasing for each subband.
We believe these approaches should be compared by simulation results in different propagation scenarios before taking the final decision. In this contribution, system-level evaluation results are provided to compare these feedback approaches for both 4Tx and 8Tx with cross-polarized and co-polarized antenna configurations.
2. Two-stage feedback approaches
2.1 Adaptive feedback
Adaptive feedback, i.e. spatial correlation matrix based feedback, was firstly proposed in [6, 7] and introduced to 3GPP RAN1 discussion on UE feedback in [8]. Many companies have proposed various solutions for implementing two-stage adaptive feedback in Rel-10, e.g. [3, 9-11].
In the following, we clarify our solution of how to implement two-stage adaptive feedback in Rel-10.
In the case of adaptive feedback, 
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 is designed to represent long-term wideband spatial correlation information. It is selected from the codebook 
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 in which each entry 
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 is a Hermitian matrix of size 
[image: image8.wmf]MM

´

 with 
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 denoting the number of transmit antennas at the eNB. In common with the Rel-8 PMI approach, the exact selection criterion would not be specified, but one typical example could be to maximize the collinearity of the measured spatial correlation matrix 
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 and the selected codeword, such that
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For the short-term subband feedback, with each codeword 
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 in the codebook 
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, a corresponding precoder candidate 
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 can be derived by orthogonalizing and normalizing the product of 
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As an example, the Gram-Schmidt process can be used to do orthogonalization and normalization (the details of the process are given in Appendix 3). In other words, with 
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, the codebook 
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 is transformed to a precoding matrix codebook composed of 
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. The index of the precoding matrix selected according to certain criterion, e.g. capacity maximization, is to be fed back to the eNB. 
Denote the two indices received at the eNB by 
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, corresponding to 
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 feedback and 
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 feedback respectively. At the eNB, the UE-reported precoding matrix 
[image: image25.wmf]W

  is retrieved via 
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Figure 1 illustrates the mechanism of adaptive two-stage feedback. 
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Figure 1
Two-stage adaptive feedback

The optimal codebook design for 
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 depends on the eNB antenna configuration. Therefore, in Appendix 2, we propose different combinations of 
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 and 
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 for different antenna configurations. The choice of 
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 and 
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 could be configured by RRC signaling depending on the eNB. Alternatively, a single codebook could be designed containing entries suitable for multiple antenna configurations. For example, the 6-bit C1(ULA, r=0.9) and the 6-bit C1(Xpol, r=0.95) can be combined into a 7-bit 
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 for 
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 feedback and use the PMI codebook in Rel-8 and C2(Conc.) as 4-bit 
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 for 
[image: image38.wmf]2

W

 feedback for 4Tx and 8Tx respectively. 
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 report can be used alone with long-term wideband CQI report for long-term wideband precoding, e.g., taking the principle eigenmode of 
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 as reported long-tem wideband precoder.
2.2 Differential feedback
In differential feedback [4], the recommended precoder structure for a subband is 
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where 
· 
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 is a tall 
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 unitary matrix with 
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 denotes the rank.
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 is a square unitary 
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 diagonal matrix, i.e.,
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representing one-step differential on each subband. 
Figure 2 illustrates the mechanism of differential two-stage feedback.
[image: image50.png]
Figure 2  Two-stage differential feedback
For details of differential two-stage feedback, please refer to [4].
2.3 Cluster based feedback
In cluster based feedback [5], the recommended precoder structure for a subband is 
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where 
[image: image53.wmf]1

W

 is a block diagonal matrix denoting a cluster composed of 4 DFT beams chosen over wideband and 
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 executes beam selection and co-phasing for each subband.
Figure 3 illustrates the mechanism of cluster based two-stage feedback.
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Figure 3  Two-stage cluster based feedback
For details of Cluster based two-stage feedback, please refer to [5].
3. System-level simulation assumptions and results
Simulation assumptions and parameters are listed in Appendix 1. The codebooks for our adaptive feedback solution are given in Appendix 2. For differential feedback for 8Tx, 8Tx codebook proposal 1 in [4] is evaluated in this contribution. System-level simulation results are given in Table 1-4 corresponding to co-polarized antenna and cross-polarized antenna for 4Tx and 8Tx. 
CSI-RS/DM-RS Error Modeling:
In the simulations, performance loss resulting from the real channel estimation errors is considered for both CSI-RS and DM-RS. In this section, we describe the method of channel estimation error modeling.

The channel estimation MSE is modelled as
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where 
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 denotes the asymptotic interpolation error, 
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 denotes the noise gain, 
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 denotes the power boosting of reference signal over data, 
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 denotes average total signal power, and 
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 denotes the average IPN (interference plus noise) power.
For CSI-RS, the impact of the real channel estimation is modelled so that some zero-mean Gaussian distributed error with appropriate variance is added to the ideal channels and the channel measurements (e.g., CQI, PMI estimation) are based on the real channel with the added Gaussian noise, which leads to some performance loss.

For DM-RS, the impact of the real channel estimation is modelled such that the channel estimation errors increases the IPN level in the data transmission model, that is, the effect of the real channel estimations is reflected on the increased IPN level, which can be deduced easily.

In our simulations, LMMSE channel estimation is assumed for CSI-RS and DM-RS.

Feedback Error Modeling:
We simulate the PMI and CQI feedback error with the codeword error rate of 1%. PMI includes the PMI of 
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, and CQI includes SU-CQI and MU-CQI. 
Table 1 4Tx Rel-8 feedback
	Antenna configuration
	Feedback
	Large Angle Spread (15deg.)
	Small Angle Spread (8deg.)

	
	
	Average SE
(bps/Hz/cell)
	Edge SE
(bps/Hz/user)
	Average SE
(bps/Hz/cell)
	Edge SE
(bps/Hz/user)

	4Tx ULA 0.5wl
	Rel-8 SU
	2.37
	0.077
	2.29
	0.084

	
	Rel-8 feedback based MU
	2.94
	0.090
	3.38
	0.107

	
	Rel-8 MU / Rel-8 SU (%)
	24.1%
	16.9%
	47.6%
	27.4%

	4Tx CLA 0.5wl
	Rel-8 SU
	2.49
	0.062
	2.52
	0.063

	
	Rel-8 feedback based MU
	2.54
	0.064
	2.58
	0.065

	
	Rel-8 MU / Rel-8 SU (%)
	2.0%
	3.2%
	2.4%
	3.2%


Observations:

· For Rel-8 SU-MIMO, when CLA is deployed, average SE is improved while cell-edge SE is decreased a little compared to ULA. The reason might be that the received signal power is decreased and the spatial correlation scenario is changed.
· For Rel-8 feedback based MU-MIMO, when CLA is deployed, average SE and cell-edge SE are decreased significantly compared to ULA. The reason might be that received signal power and spatial correlation are decreased.
· For Rel-8 feedback, when ULA is deployed, MU-MIMO achieves significant performance gain over SU-MIMO, up to 47.6% in cell average SE and 27.4% in cell-edge SE; when CLA is deployed, MU-MIMO achieves small performance gain over SU-MIMO in cell average SE and cell-edge SE.

Table 2 4Tx Rel-10 feedback proposals
	Antenna configuration
	Feedback
	Codebook
	Large Angle Spread (15deg.)
	Small Angle Spread (8deg.)
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	Average SE
	Edge SE
	Average SE
	Edge SE

	4Tx ULA 0.5wl
	Rel-8 feedback based MU
	4-bit Rel-8 codebook
	N/A
	2.94
	0.090
	3.38
	0.107

	
	Adaptive feedback
	6-bit C1(ULA, r =0.9)
	4-bit Rel-8 codebook
	3.37
	0.099
	4.14
	0.112

	
	Adaptive / Rel-8 MU feedback (%)
	14.6%
	10.0%
	22.5%
	4.7%

	
	Differential feedback
	4-bit Rel-8 codebook
	2-bit diagonal matrix
	3.30
	0.098
	4.03
	0.112

	
	Adaptive / Differential feedback (%)
	2.1%
	1%
	2.7%
	0%

	4Tx CLA 0.5wl
	Rel-8 feedback based MU
	4-bit Rel-8 codebook
	N/A
	2.54
	0.064
	2.58
	0.065

	
	Adaptive feedback
	6-bit C1(Xpol, r=1)
	4-bit C2(Xpol)
	2.71
	0.072
	2.85
	0.074

	
	Adaptive feedback
	6-bit C1(Xpol, r =0.95)
	4-bit Rel-8 codebook
	2.67
	0.069
	2.77
	0.072

	
	Adaptive / Rel-8 MU feedback (%)
	6.7%
	12.5%
	10.5%
	13.8%

	
	Differential feedback
	4-bit Rel-8 codebook
	3-bit diagonal matrix
	2.59
	0.066
	2.66
	0.068

	
	Adaptive / Differential feedback (%)
	4.6%
	9.1%
	7.1%
	8.8%


Observations:

· Rel-10 MU-MIMO based on adaptive feedback brings consistent performance gain in all considered scenarios, with significant performance gain in 4Tx ULA with small angle spread, up to 22.5% for cell-average SE and 4.7% for cell-edge SE compared with Rel-8 feedback based MU-MIMO.

· For adaptive feedback, compared with reusing Rel-8 codebook for W2, newly designed codebook C2(XPOL) for W2 in 4Tx CLA with small angle spread brings some gain about 2.9% for cell average SE and 2.8% for cell-edge SE.
· Adaptive feedback brings consistent performance gain compared to differential feedback in various scenarios, particularly up to 7.1% for cell-average SE and 8.8% for cell-edge SE in 4Tx CLA with small angle spread.
Table 3 8Tx Rel-10 feedback proposals
	Antenna configuration
	Feedback
	Codebook
	Large Angel Spread (15deg.)
	Small Angle Spread (8deg.)
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	Average SE
	Edge SE
	Average SE
	Edge SE

	8Tx ULA 0.5wl
	Adaptive feedback
	6-bit C1(ULA, r=0.9)
	4-bit C2(Conc.)
	4.07
	0.142
	5.29
	0.176

	
	Differential feedback
	4 bits
	2-bit diagonal matrix
	3.79
	0.124
	4.83
	0.167

	
	Adaptive / Differential feedback (%)
	7.4%
	14.5%
	9.5%
	5.4%

	
	Cluster based feedback
	3-bit DFT sets
	4-bit selection and co-phasing matrix
	3.72
	0.128
	4.54
	0.165

	
	Adaptive / Cluster based feedback (%)
	9.4%
	10.9%
	16.5%
	6.7%

	8Tx CLA 0.5wl
	Adaptive feedback
	6-bit C1(Xpol, r=1)
	4-bit C2(Xpol)
	3.40
	0.103
	3.90
	0.119

	
	Adaptive feedback
	6-bit C1(Xpol, r=0.95)
	4-bit C2(Conc.)
	3.30
	0.094
	3.77
	0.116

	
	Differential feedback
	4 bits
	2-bit diagonal matrix
	3.16
	0.093
	3.40
	0.105

	
	Adaptive / Differential feedback (%)
	7.6%
	10.8%
	14.7%
	13.3%

	
	Cluster based feedback
	3-bit DFT sets
	4-bit selection and co-phasing matrix
	3.27
	0.097
	3.58
	0.111

	
	Adaptive / Cluster based feedback (%)
	4.0%
	6.2%
	8.9%
	7.2%


Observations:

· Adaptive feedback brings consistent performance gain over differential feedback in various scenarios, particularly up to 14.7% for cell-average SE and 13.3% for cell-edge SE in 8Tx CLA with small angle spread.

· Adaptive feedback also brings consistent performance gain over Cluster based feedback in various scenarios, particularly up to 16.5% for cell-average SE and 6.7% for cell-edge SE in 8Tx ULA with small angle spread.
Table 4 Rel-10 feedback in ITU-UMi scenario
	Antenna configuration

	Feedback
	Codebook
	Urban-micro
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	Average SE
(bps/Hz/cell)
	Edge SE
(bps/Hz/user)

	4Tx ULA 0.5wl
	Rel-8 SU
	4-bit Rel-8 codebook
	N/A
	1.94
	0.061

	
	Rel-8 feedback based MU
	4-bit Rel-8 codebook
	N/A
	2.58
	0.075

	
	Adaptive feedback
	6-bit C1(ULA, r =0.9)
	4-bit Rel-8 codebook
	3.02
	0.075

	
	Adaptive / Rel-8 MU feedback (%)
	17.1%
	0%


Observations:

· Rel-8 SU-MIMO alone cannot meet ITU-R requirement, i.e. 2.6 for cell-average SE and 0.075 for cell-edge SE.
· Rel-8 feedback based MU-MIMO is very close to but still does not meet ITU-R requirement.
Adaptive feedback fully meets the ITU-R requirements, with 17.1% gain for average SE compared with Rel-8 feedback based MU-MIMO.
4. Conclusion
This contribution evaluates the major feedback approaches discussed in previous RAN1 meetings. Simulation results show for co-polarized and cross-polarized antennas, adaptive feedback is robust to spatially correlated channels.

We conclude that:

·  4Tx Rel-10 feedback enhancement is necessary. Simulation results show that adaptive feedback brings significant performance gain, up to 22.5% for cell-average SE and 13.8% for cell-edge SE compared with Rel-8 feedback based MU-MIMO.
·  Adaptive feedback brings consistent performance gain over differential feedback and Cluster based feedback. 
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Appendix 1 Simulation assumptions and parameters
	Parameter
	Assumptions used for evaluation

	Deployment scenario
	3GPP case 1 3D, SCM-UMa with high angle spread (15deg) and   low angle spread (8deg); ITU UMi

	Cell number
	19 cells with 3 sectors per cell

	Wrap-around model
	Yes

	Duplex method and bandwidths
	FDD: 10MHz for downlink

	Network synchronization
	Synchronized

	Traffic model
	Full-buffer

	UE number per sector
	10

	Maximal number of co-scheduled UE
	4

	Handover margin
	1.0 dB

	eNB Antenna assumptions
	4Tx, 8Tx:
· Co-polarized antennas with 0.5-lambda spacing (ULA): Vertically polarized
· Cross-polarized antennas with 0.5-lambda spacing (CLA): +/- 45 degrees

	UE antenna assumptions
	2Rx:

· A single co-polarized ULA with 0.5-lambda spacing with vertical polarization
· One pair of cross-polarized antennas with polarization angles of +90/0 degrees

	UE antenna orientation
	Random distribution within range [-90, 90] degrees

	Calibrated antenna array
	Ideal

	Downlink transmission scheme
	I. Rel-8 SU-MIMO w/ rank ½ adaptation
II. Rel-8 feedback based Rel-10 MU-MIMO
Approach

Max rank per UE

Dynamic SU/MU-MIMO switching

Rel-8 feedback based MU
SU: 2

MU: 1
Yes
III.  Rel-10 feedback proposals
Approach

Max rank per UE

Dynamic SU/MU-MIMO switching

Adaptive feedback

SU: 2

MU: 1

Yes

Differential feedback
SU: 2

MU: 1
Yes

Cluster based feedback
SU: 2

MU: 1
Yes
Note: All MU-MIMO schemes for II and III are based on low-bound MU CQI, DMRS, ZF precoding, w/ SU and MU MIMO switching

	Downlink scheduler
	Proportional fair, frequency selective

	Feedback assumptions (feedback periodicity in time domain, feedback granularity in frequency domain)
	I. Rel-8 SU-MIMO: wideband PMI, and sub-band CQI

II. Rel-8 feedback based Rel-10 MU-MIMO: wideband PMI, and sub-band CQI
III. Rel-10 feedback proposals: long-term/wideband W1 and short-term/sub-band W2, and sub-band CQI

	
	Sub-band CQI report: 5ms periodicity, 6ms delay, with measurement error: N(0,1dB) per PRB

	
	W1 and W2 report:

a) Adaptive feedback: 100ms and 5ms periodicity for W1 and W2 respectively, and 6ms feedback delay

b) Differential feedback and Cluster based feedback: 5ms periodicity for both W1 and W2, and 6ms feedback delay

	CQI
	SU-CQI for SU-MIMO and low-bound MU-CQI for MU-MIMO

	Downlink HARQ scheme
	Synchronous HARQ, Chase combining

	Downlink receiver type
	MMSE

	CSI-RS based CSI estimation error
	Real

	DM-RS channel estimation
	Real

	Feedback error
	1% codeword error rate

	HARQ
	Chase combing with max 4 retransmissions

	Control channel and reference signal overhead
	As agreed in ITU assumption with PDCCH of 3 OFDM symbols

LTE Rel-8 SU-MIMO: 0.3158

LTE Rel-8 and R10 feedback based MU-MIMO: 0.3063


Appendix 2 Codebook one and two in our adaptive feedback solution
1) Closely-spaced 4Tx co-polarized ULA
Codebook design principle for 
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：
It is known that for a real channel with closely-spaced ULA antennas, the spatial correlation matrix normalized by the maximal diagonal entry, can be approximated by an exponential correlation model, in which each 
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 is a real number and all diagonal entries are approximated to 1 since the antennas are highly correlated [14]. Considering a complex channel, we extend this normalized model to a complex exponential correlation model, in which each 
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 are two independent random variables and 
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 is uniformly distributed. 

In terms of certain correlation scenario, 
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 can be fixed to certain value, e.g. 
[image: image80.wmf]0.9

r

=

 for half-wavelength spaced ULA antennas. Consequently, a correlation matrix codebook 
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 can be generated, each codeword in 
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 being a Hermitian matrix of size 
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 for closely-spaced 4Tx co-polarized ULA：
For closely-spaced 4Tx co-polarized ULA, we propose to use the 4-bit PMI codebook in Rel-8 as 
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 and the 6-bit C1(ULA, r=0.9) given in Table 5 as 
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Table 5 

6-bit C1(ULA, r=0.9)
M: the number of transmit antennas. 
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2) Closely-spaced 4Tx cross-polarized CLA
Codebook design principle for 
[image: image93.wmf]1
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:

In the case of cross-polarized CLA, the antennas can be divided into two groups. Antennas in each group are on the same polarization and thus can be treated as co-polarized ULA antennas. Theoretically, antennas in different groups are spatially uncorrelated. Hence, the spatial correlation matrix 
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 could be approximated by a block diagonal matrix 
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where 
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 Hermitian matrices. Moreover, from observations, we find that in the case of closely-spaced cross-polarized CLA, 
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 is a positive real number. So we have
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Therefore, with an 
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-bit correlation-matrix codebook for 
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-Tx ULA and an 
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)-bit correlation-matrix codebook for correlation matrix feedback in the case of closely-spaced cross-polarized CLA.
Option 1 of 
[image: image107.wmf]1

C

 and 
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 for closely-space 4Tx cross-polarized CLA:

For closely-spaced 4Tx cross-polarized CLA, we propose to use the 4-bit PMI codebook in Rel-8 as 
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 and the 6-bit C1(Xpol, r=0.95) given in Table 6 as 
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 as an optional solution (option 1). 

Table 6

C1(Xpol, r=0.95)
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For closely-spaced 4Tx cross-polarized CLA, we propose to use the 4-bit C2(Xpol) given in Table 7 as 
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 as an alternative optional solution (option 2). This solution is somewhat Cluster based feedback but implemented in the framework of two-stage adaptive feedback. 

Table 7

4-bit C2(Xpol)
M: the number of transmit antennas. 
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Table 8

6-bit C1(Xpol, r=1)
M: the number of transmit antennas. 
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3) Closely-spaced 8Tx co-polarized ULA

The codebook design principle for 
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 for closely-spaced 4Tx co-polarized ULA is also effective for closely-spaced 8Tx co-polarized ULA. 

For closely-spaced 8Tx co-polarized CLA, we propose to use the 4-bit C2(Conc.) given in Table 10 as 
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 and the 6-bit C1(ULA, r=0.9) given in Table 5 as 
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. Note that the 4-bit C2(Conc.) is a concatenated codebook based on the 4Tx PMI codebook defined in 3GPP LTE Rel-8.
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4) Closely-spaced 8Tx cross-polarized CLA

The codebook design principle for 
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 for closely-spaced 4Tx cross-polarized CLA is also effective for closely-spaced 8Tx co-polarized ULA. 

Option 1 of 
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 and 
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 for closely-space 8Tx cross-polarized CLA:

For closely-spaced 8Tx cross-polarized CLA, we propose to use the 4-bit C2(Conc.) given in Table 10 as 
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 and the 6-bit C1(Xpol, r=0.95) given in Table 6 as 
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 as an optional solution (option 1).
Option 2 of 
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 and 
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 for closely-space 8Tx cross-polarized CLA:

For closely-spaced 8Tx cross-polarized CLA, we propose to use the 4-bit C2(Xpol) given in Table 7 as 
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 and the 6-bit C1(Xpol, r=1) given in Table 8 as 
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 as an alternative optional solution (option 2). This solution is somewhat Cluster based feedback but implemented in the framework of two-stage adaptive feedback.
Appendix 3 Orthogonalization and normalization in our adaptive feedback solution
For multi-rank precoder, the raw precoder candidates 
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At the UE:
Step 1 (generate raw precoding matrix candidates): 
When the PMI codebook in Rel-8 or C2(Conc.) in Table 10 is used as 
[image: image228.wmf]2

C

, raw precoding matrix candidates are generated as follows:
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When C2(Xpol) in Table 7 is used, raw precoding matrix candidates are generated as follows:
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Step 2 (Gram-Schmidt process):
Based on 
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Note that 
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where 
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 and 
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 are column vectors of the same lengths. 

Step 3 (normalization):
The precoding matrix candidates are 


[image: image262.wmf]4

1

1

[,,,,],0,,21.

iiii

kl

i

l

=¼¼=¼-

Weee


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (16)

At the eNB:
Denote the two indices received at the eNodeB by 
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 corresponding to 
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 feedback and 
[image: image266.wmf]2

W

 feedback respectively.
Step 1 (generate the raw precoding matrix): 
When the PMI codebook in Rel-8 or C2(Conc.) in Table 10 is used as 
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, the raw UE-reported precoding matrix is generated as
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When C2(Xpol) in Table 7 is used, the raw UE-reported precoding matrix is generated as
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Step 2 (Gram-Schmidt process):
Based on 
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Step 3 (normalization):
The UE-reported precoding matrix is
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