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1 Introduction
MU-MIMO dimensioning has been discussed in previous meeting and some decisions are made in RAN1#59bis as follow:

For the design of downlink signalling and DM RS, the following is assumed for MU-MIMO:

· Not more than 4 UEs are co-scheduled 

· Note that the actual maximum number of co-scheduled UEs does not need to be specified.

· Not more than 2 layers per UE with 2 orthogonal DM RS ports

· Not more than 4-layer transmission in total for MU-MIMO transmission 

Two alternatives are to be studied:

· 4 orthogonal DM RS ports and 1 scrambling sequence are defined

· 2 orthogonal DM RS ports and 2 scrambling sequences are defined as in Rel-9

· FFS whether one or both alternatives will be specified (and if only one, which one).
· Note that in any case TM8 will remain specified in Rel-10. 
In this contribution, the alternatives of DM RS used for MU-MIMO are evaluated by system and link level simulation and based on the discussion and simulation results we propose that:
· 4 orthogonal DM RS ports are preferred for MU-MIMO.

· The length of the orthogonal cover codes is 4.
2 Discussion on the 2 and 4 orthogonal DMRS ports
2.1 Rel-9 DM RS for MU-MIMO

The DM RS pattern for SU/MU MIMO in Rel-9 is shown in Fig.1.
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Fig.1 DM RS pattern for Rel-9.
For Rel-9, 2 orthogonal DM RS ports and 2 scrambling sequences are defined. For single user transmission, the same scrambling sequence is used for two layers. And Walsh cover codes w1= [1 1] and w2= [1 -1] are used as orthogonal cover codes for the two layers respectively. For MU-MIMO transmission, the scrambling sequence used for different users can be the same or different. When total rank/layers > 2, the orthogonality of the DM RS does not hold any more.
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Fig.2 DM RS and scrambling sequences used for 3- and 4-layer transmissions for MU-MIMO.
In Fig.2, 3 or 4 layers are transmitted in MU-MIMO mode. It can be seen that layer 1 and 2 use the same scrambling sequence but different Walsh cover codes. On the other hand, layer 3 and 4 (if it exists) use another scrambling sequence. Taking 3-layer transmission as an example, for layer 1, the interference from layer 2 can be well canceled because of the Walsh code orthogonality. However, layer 3 will cause interference to layer 1 and deteriorate the channel estimation performance, due to the non-orthogonal scrambling sequences. The impact of channel estimation by non-orthogonal DMRS is analyzed further in Appendix I.

2.2 Four orthogonal DM RS ports
For 4 orthogonal DM RS, there are two choices in terms of RS patterns. One is the DMRS pattern with OCC=4 (Orthogonal Cover Code) and a 12-RE overhead, as illustrated on the left hand side of Fig.3. The other is the DMRS pattern with OCC=2 and a 24-RE overhead, as shown on the right hand side of Fig.3.
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Fig.3 Candidate orthogonal DM RS patterns.
3 System simulation
System level evaluations of orthogonal and non-orthogonal DMRS based MU-MIMO is carried out, assuming blind detection and IRC (interference rejection combining) receiver. The results are given in Fig.4 and 5 respectively. The performance of the two orthogonal DMRS patterns as shown in Fig.3 is further evaluated. The simulation parameters can be found in Appendix II.
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Fig.4 Comparison of orthogonal DM RS and non-orthogonal DM RS (cross-polarization 8×2).
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Fig.5 Comparison of orthogonal DM RS and non-orthogonal DM RS (ULA 8×2).
These simulation results show that the orthogonal DMRS with OCC = 4 achieves 10~15% cell average throughput gain over the non-orthogonal DMRS. The results also show that the orthogonal DMRS with OCC = 2 performs even inferior to the non-orthogonal DMRS, partly because of the larger overhead.
4 Link level simulation
4.1 Simulation assumptions
We further carry out link level simulations and compare the following schemes:
· 4 orthogonal DM RS ports with OCC =4 
· 2 orthogonal DM RS ports and 2 scrambling sequences.
The link-level simulation parameters are listed in Appendix II. Maximum 4 out of 10 UEs are co-scheduled based on the well-known greedy proportional fair algorithm. Two types of receiver are used in the simulation: the IRC receiver which treats the other co-scheduled UEs as interference and the MRC receiver which has no interference rejection capability.
Fig.6 and 7 illustrate the achieved spectrum efficiency by using MRC and IRC receiver, for orthogonal and non-orthogonal DMRS respectively. The yellow solid line further illustrates the relative gain of IRC over MRC as a function of the SNR. Roughly speaking, IRC receiver provides 20~45% throughput gain over MRC receiver.
Fig.8 compares the achieved spectrum efficiency by using the orthogonal DMRS pattern (OCC=4, 12 RE) and the non-orthogonal DMRS pattern (OCC=2, 12 RE), assuming an IRC receiver. Similar comparisons are done in Fig.9 as well assuming an MRC receiver. For each figure, the solid yellow line demonstrates the relative gain of orthogonal DMRS over non-orthogonal DMRS, as a function of the SNR. It can be concluded that orthogonal DMRS outperforms its counterpart by roughly 5% (for MRC) and 11%~16% (for IRC).
Also, we find that when using MRC receiver, total rank up to 3 or 4 makes up very small portion of the simulation, therefore, the channel estimation error gap between orthogonal and non-orthogonal DMRS does not come out as obviously as IRC receiver. But the expectant gain brought by high dimension of MU-MIMO is lost.

[image: image8.wmf]8x2, ULA, orthogonal DMRS

2.49%

11.28%

28.24%

46.84%

0

1

2

3

4

5

6

0

5

10

15

SNR (dB)

SE (bits/s/Hz)

12RE, OCC = 4, IRC

12RE, OCC = 4, MRC

Relative Gain


Fig.6 Comparison of performance of MRC and IRC receiver using orthogonal DM RS. 
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Fig.7 Comparison of performance of MRC and IRC receiver using non-orthogonal DM RS
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Fig.8 Comparison of orthogonal DM RS and non-orthogonal DM RS using IRC receiver
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Fig.9 Comparison of orthogonal DM RS and non-orthogonal DM RS using MRC receiver
5 Conclusion
In this contribution, the orthogonal and non-orthogonal DMRS patterns for Rel.10 MU-MIMO are studied, followed by extensive link level and system level simulation results. The numerical results demonstrate that the orthogonal DMRS outperforms the non-orthogonal DMRS significantly in terms of the achievable throughput. Furthermore, within the orthogonal DMRS category, the OCC 4 pattern is more bandwidth efficient than the OCC 2 pattern, partly because of the latter’s larger overhead. We thus propose: 

· Four orthogonal DMRS ports are available for MU-MIMO

· The length-4 orthogonal cover codes shall be used.
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Appendix I Modelling channel estimation error introduced by non-orthogonal DMRS
In this section, an example of rank 3 transmissions, which is shown in Fig. 2, is given to model the channel estimation error introduced by non-orthogonal DM RS, assuming one layer per paired UE. The combination of orthogonal cover code ([1 -1]) and scrambling code is diagramed in Fig.10. Fig.11 illustrates the subcarriers occupied by different DM RS symbols, where
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 indicates the channel of the jth user in ith DM RS subcarrier.
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Fig.10 Combination of DMRS and OCC                                    Fig.11 DM RS subcarriers
In Fig.10, 
[image: image15.wmf]i

k

a

(k =0, 1 is the scramble code index; i=1 to 12 is the DM RS subcarrier index) is the DM RS symbol. When 3-layer transmission as shown in Fig.2 is used, the DM RS sequences for layer 1 to layer 3 are listed in Table 1.

Table 1 DMRS of 3-layer transmission for MU MIMO

	Layer 1
	Layer 2
	Layer 3
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Let layer 1 be scheduled to UE1, layer 2 to UE2 and layer 3 to UE 3. Channel of UE1 is represented as
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, where subscript denotes UE /layer index and superscript denotes the index of DM RS subcarrier. Then the receiving signal of ith DM RS is:
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where wi is the precoding vector for UE i/layer i, 
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 is the noise at ith subcarrier. To simplify the analysis of channel estimation impact on non-orthogonal DM RS, 
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 (i is odd number) is virtually the same as
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. Then after de-scrambling, the receiving signal is expressed as:
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where 
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 is the OCC code for UE j / layer j. And 
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 across all i for UE 1 and UE 3 in Fig.2. And for UE2/ layer 2, 
[image: image61.wmf]1

i

j

o

=

 when i is odd and 
[image: image62.wmf]1

i

j

o

=-

 when i is even.

Then after de-spreading of OCC, equation (2) becomes:
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Summing up 
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where the last equation follows with the assumption that
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Then after de-spreading, the interference from the UE using the same scrambling code is cancelled. For non orthogonal DM RS, the interference can only be smoothed out by de-scrambling. In this case, summing up 
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where the last equation follows the assumption that
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From equation (5), the estimated channel can be modelled as:
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where 
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 is the ideal channel for UE 1, and  
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 is the channel estimation error due to non-orthogonal DM RS. The error term 
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 in equation (6) can be seen as a channel estimation error lower bound because no noise and frequency/time selectivity of channel is considered. For UE 1, the estimated channel for layer 2 and layer 3 are as follows 
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At the receiver side, the received signal is
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where s1, s2, s3 are the transmit symbols from UE 1/layer 1 to UE 3/layer 3 and n1 is the noise with covariance matrix 
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The MMSE-IRC receiver weighting vector for UE1 is
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The optimal weight vector with idea channel is 
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where 
[image: image83.wmf]1

ˆ

ii

HHw

=

.
The output signal of the receiver combiner is 
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where 
[image: image85.wmf]1,1

gIRCo

gg

D=-

,which is independent of the effective channel 
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. In equation (12), the first term is the desired signal part, the second term is the interference caused by channel estimation error, while the third term is the residual inter-layer interference plus noise.

Then the average power of the first term is 
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where the equation follows with the assumption that 
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The average power of the second term is 
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Assuming that
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where the third line of the equation (14) follows from the following
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From the above analysis, the SINR of the MMSE-IRC receiver taking into account of the channel estimation error can be expressed as:
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            (15)
where M is the total rank/layers. M = 3 is assumed in our analysis.
Appendix II Simulation parameters
Table 2 System level simulation parameters
	Parameter
	Assumption

	Cellular Layout
	 19 sites, 3 sectors per site

	Simulation scenarios
	Case1 in TR25.814

	Load
	Average 10 UE per sector

	Bandwidth
	10MHz

	Channel model
	SCM

	UE speeds of interest
	3km/h

	antenna configuration
	8×2, cross-polarization  and ULA antenna,  

BS: 0.5 Lambda  MS: 0.5 Lambda

	Codebook
	4-bit codebook based on rotated DFT matrix[16]

	Traffic model
	Full buffer

	Scheduler
	Proportional Fair

	Channel  estimation
	Ideal, but the channel estimation error due to Non-orthogonal DM RS are modelled

	MU-MIMO
	Maximum paired MU-MIMO user number is 4, and one layer per user 

	Subband size
	5 RB

	HARQ
	Maximum 4 transmission 

	Transmitter precoding algorithm
	ZFBF(Zero forcing beamforming) 

	Receiver algorithm
	MMSE-IRC/Blind detection enable 

	Overheads 
	3 OFDM symbols for control channel, 4 CRS ports, 12 REs for DM RS or 24 REs for DM RS


Table 3 Link level simulation parameters
	Parameter
	Assumption

	Transmission bandwidth
	10 MHz

	Subframe length
	1 msec

	Subband bandwidth
	1.08 MHz (6RBs)

	Channel model
	ULA

	Maximum Doppler frequency
	fD = 5.55 Hz

	antenna configuration
	Tx = 8, Rx = 2

	Scheduler
	Scheduling on a fixed subband based on Proportional Fair

	UE number in a cell 
	10

	Dimensioning of MU-MIMO
	Maximum paired MU-MIMO user number is 4, and one layer per user

	Overhead
	PDCCH: 3 symbols

CRS: 4 ports

DMRS: 12RE

	Channel  estimation
	Real CE based on DMRS

	HARQ
	Maximum 4 transmission
Chase Combining

10% BLER for each UE

	Transmitter precoding algorithm
	ZFBF

	Receiver algorithm
	MMSE-IRC/MRC

	PMI feedback
	Subband PMI

	CQI feedback 
	Subband CQI

	Codebook
	DFT 4bit codebook
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