Page 1

3GPP TSG RAN WG1 #56b
(R1-091406
Seoul，South Korea , 23th-27th Mar 2009
	CR-Form-v9.6

	CHANGE REQUEST

	

	(
	36.212
	CR
	
	(
rev
	-
	(
Current version:
	8.6.0
	(

	

	For HELP on using this form look at the pop-up text over the (symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(
	UICC apps(
	
	ME
	
	Radio Access Network
	X
	Core Network
	

	

	Title:
(
	Clarification to Code block segmentation and code block CRC attachment

	
	

	Source to WG:
(
	Potevio

	Source to TSG:
(
	RAN1

	
	

	Work item code:
(
	LTE-Phys
	
	Date: (
	09/03/2009

	
	
	
	
	

	Category:
(
	F
	
	Release: (
	

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)

	
	

	Reason for change:
(
	C (0 is always statisified, so the case condition C (0 is redundancy in the “Code block segmentation and code block CRC attachment in 5.1.2”.

	
	

	Summary of change:
(
	Delete the case condition C (0.

	
	

	Consequences if
(
not approved:
	An unnecessary judgement is processed.

	
	

	Clauses affected:
(
	5.1.2

	
	

	
	Y
	N
	
	

	Other specs
(
	
	X
	 Other core specifications
(
	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(
	

5.1.2
Code block segmentation and code block CRC attachment

The input bit sequence to the code block segmentation is denoted by
[image: image1.wmf]1

3

2

1

0

,...,

,

,

,

-

B

b

b

b

b

b

, where B > 0. If B is larger than the maximum code block size Z, segmentation of the input bit sequence is performed and an additional CRC sequence of L = 24 bits is attached to each code block. The maximum code block size is:

-
Z = 6144.

If the number of filler bits F calculated below is not 0, filler bits are added to the beginning of the first block.

Note that if B < 40, filler bits are added to the beginning of the code block.

The filler bits shall be set to <NULL> at the input to the encoder.

Total number of code blocks C is determined by:

if
[image: image2.wmf]Z

B

£

L = 0

Number of code blocks:
[image: image3.wmf]1

=

C

[image: image4.wmf]B

B

=

¢

else

L = 24

Number of code blocks:
[image: image5.wmf](

)

é

ù

L

Z

B

C

-

=

/

.

[image: image6.wmf]L

C

B

B

×

+

=

¢

end if

The bits output from code block segmentation are denoted by
[image: image7.wmf](

)

1

3

2

1

0

,...,

,

,

,

-

r

K

r

r

r

r

r

c

c

c

c

c

 , where r is the code block number, and Kr is the number of bits for the code block number r.

Number of bits in each code block:

First segmentation size:
[image: image8.wmf]+

K

= minimum K in table 5.1.3-3 such that
[image: image9.wmf]B

K

C

¢

³

×

if
[image: image10.wmf]1

=

C

the number of code blocks with length
[image: image11.wmf]+

K

 is
[image: image12.wmf]+

C

=1,
[image: image13.wmf]0

=

-

K

,
[image: image14.wmf]0

=

-

C

else if
[image: image15.wmf]1

>

C

Second segmentation size:
[image: image16.wmf]-

K

= maximum K in table 5.1.3-3 such that
[image: image17.wmf]+

<

K

K

[image: image18.wmf]-

+

-

=

D

K

K

K

Number of segments of size
[image: image19.wmf]-

K

:
[image: image20.wmf]ú

û

ú

ê

ë

ê

D

¢

-

×

=

+

-

K

B

K

C

C

.

Number of segments of size
[image: image21.wmf]+

K

:
[image: image22.wmf]-

+

-

=

C

C

C

.

end if
Number of filler bits:
[image: image23.wmf]B

K

C

K

C

F

¢

-

×

+

×

=

-

-

+

+

for k = 0 to F-1

-- Insertion of filler bits

[image: image24.wmf]>

=<

NULL

c

k

0

end for
k = F
s = 0

for r = 0 to C-1

if
[image: image25.wmf]-

<

C

r

[image: image26.wmf]-

=

K

K

r

else

[image: image27.wmf]+

=

K

K

r

end if

while
[image: image28.wmf]L

K

k

r

-

<

[image: image29.wmf]s

rk

b

c

=

[image: image30.wmf]1

+

=

k

k

[image: image31.wmf]1

+

=

s

s

end while

if C >1
The sequence
[image: image32.wmf](

)

1

3

2

1

0

,...,

,

,

,

-

-

L

K

r

r

r

r

r

r

c

c

c

c

c

 is used to calculate the CRC parity bits
[image: image33.wmf](

)

1

2

1

0

,...,

,

,

-

L

r

r

r

r

p

p

p

p

 according to subclause 5.1.1 with the generator polynomial gCRC24B(D). For CRC calculation it is assumed that filler bits, if present, have the value 0.

while
[image: image34.wmf]r

K

k

<

[image: image35.wmf])

(

r

K

L

k

r

rk

p

c

-

+

=

[image: image36.wmf]1

+

=

k

k

end while
end if

[image: image37.wmf]0

=

k

end for
_1236454033.unknown

_1250237814.unknown

_1250238130.unknown

_1250238403.unknown

_1250527969.unknown

_1256815884.unknown

_1250238410.unknown

_1250238416.unknown

_1250238400.unknown

_1250237990.unknown

_1250238065.unknown

_1250237913.unknown

_1250237636.unknown

_1250237696.unknown

_1250237726.unknown

_1250237685.unknown

_1236454456.unknown

_1248160232.unknown

_1248522952.unknown

_1248522970.unknown

_1248160646.unknown

_1236454602.unknown

_1236454631.unknown

_1236454585.unknown

_1236454406.unknown

_1236454425.unknown

_1236454050.unknown

_1236453783.unknown

_1236453857.unknown

_1236453903.unknown

_1236453795.unknown

_1236453626.unknown

_1236453756.unknown

_1234215205.unknown

_1234213153.unknown

