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5.1.2
Code block segmentation and code block CRC attachment

The input bit sequence to the code block segmentation is denoted by
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, where B > 0. If B is larger than the maximum code block size Z, segmentation of the input bit sequence is performed and an additional CRC sequence of L = 24 bits is attached to each code block.  The maximum code block size is:

-
Z = 6144.

If the number of filler bits F calculated below is not 0, filler bits are added to the beginning of the first block. 

Note that if B < 40, filler bits are added to the beginning of the code block. 

The filler bits shall be set to <NULL> at the input to the encoder. 

Total number of code blocks C is determined by:
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L = 0


Number of code blocks: 
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L = 24


Number of code blocks: 
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end if

The bits output from code block segmentation are denoted by
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 , where r is the code block number, and Kr is the number of bits for the code block number r.

Number of bits in each code block:

First segmentation size: 
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= minimum K in table 5.1.3-3 such that 
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if 
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the number of code blocks with length 
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else if 
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Second segmentation size: 
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= maximum K in table 5.1.3-3 such that 
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Number of segments of size
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Number of segments of size
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end if
Number of filler bits: 
[image: image23.wmf]B

K

C

K

C

F

¢

-

×

+

×

=

-

-

+

+


for k = 0 to F-1





-- Insertion of filler bits
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end for
k = F
s = 0

for r = 0 to C-1


if 
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end if


while 
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end while


if C >1 
The sequence 
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 is used to calculate the CRC parity bits 
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 according to subclause 5.1.1 with the generator polynomial gCRC24B(D). For CRC calculation it is assumed that filler bits, if present, have the value 0.

while
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end while
end if
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end for
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