3GPP TSG RAN WG1 #52 meeting

R1-080851
Sorrento, Italy, February 11-15, 2008

Source: 

Mitsubishi Electric
Title:


Initialisation of shift registers for PDCCH scrambling

Agenda Item:

6.1.6
Document for:
Discussion and decision

1 Introduction

In the current EUTRA working assumption for scrambling, all physical channels are scrambled using an order-31 Gold code. The shift register size is high enough to accommodate at least the L1 Cell Identity and the UE Identity. However, the exact initialisation of the scrambling code is still to be determined. In this contribution, we propose to include the UE Identity in the PDCCH scrambling initialisation, i.e., to perform UE-specific PDCCH scrambling in order to allow for reduction of blind detection complexity at the receiver side. Different kinds of initialisation are also presented.
2 Blind detection complexity reduction through UE-specific scrambling
Through UE-specific PDCCH scrambling, we can take benefit from the repetitions of coded bits introduced by the circular-buffer rate matching in order to reduce the maximum number of blind decodes [1]. As shown in Figure 1, thanks to UE-specific scrambling/descrambling, only repetitions in PDCCHs intended for the UE of interest remain. They can be easily detected by a pre-processing performing correlation of coded bits (see [2] for details). Thanks to scrambling, descrambling, pre-processing and non-exhaustive search, the maximum complexity of blind detection is reduced. Thus, more flexibility is allowed for building the subset of PDCCHs monitored by a UE.

[image: image1.emf]CCE #1 CCE #2 CCE #3 CCE #4 CCE #5 CCE #6 CCE #7 CCE #8

UE #1

UE #2

Scrambling at eNode B

Descrambling at UE #1


Figure 1: Effect of scrambling and descrambling operation 

on the control signalling received at UE #1

3 UE-specific scrambling using Gold codes

In order to implement UE-specific scrambling, we propose that the seed of the scrambling code applied on each PDCCH contains the UE ID. We present different ways to set the seed.
3.1 Shift register initialisation: First scrambling bit corresponds to first CCE

According to [2] and [3], seed can be applied by loading it into the shift register of one m-sequence generator of the Gold sequence generator. A first possibility is to perform initialisation of the Gold code in the first CCE for all PDCCHs regardless of the CCEs actually used by the PDCCH. Then, portions of the Gold code corresponding to the CCEs actually used by the PDCCH are retained. Figure 2 depicts how Gold codes should be initialised and applied on CCEs, using the example in Figure 1. Portions of UE-specific Gold codes retained for scrambling PDCCHs are written in red.
A single descrambling with appropriate initialisation is then applied at the UE receiver. However, at the e Node B transmitter, the scrambling code is generated even for CCEs not used by the PDCCH.
[image: image2.emf]CCE#1 CCE#2 CCE#3

CCE#4 CCE#5 CCE#6 CCE#7 CCE#8

Gold code initialised 

with ID of UE #1:

00100...10010 11101…1010 00101...10110 000000...11101

00100...111010 101000...110010 001011...111010 101110...11010

Gold code initialised 

with ID of UE #2:

1110…01010 11010…1111 10100...11010 001011...111011

001100...111010 100000...111000 001000...111110 101000...11011

Initialisation/start of scrambling for UE#1 and UE#2


Figure 2: M-sequence initialisation in CCE#1 for all PDCCHs.
3.2 Shift register initialisation: First scrambling bit corresponds to first CCE of the PDCCH

Another possibility is to perform initialisation of the m-sequence in the first CCE used by the PDCCH as depicted in Figure 3 for the example already used in Figures 1 and 2. Compared to previous solution, a single Gold code generator is run per CCE. However, at the UE receiver several descrambling operations must be performed, as the scrambling operation is not common to all PDCCHs: the scrambling of each CCE used for a given UE also depends at which CCE the PDCCH starts.
[image: image3.emf]CCE#1 CCE#2 CCE#3

CCE#4 CCE#5 CCE#6 CCE#7 CCE#8

Gold code initialised 

with ID of UE #1:

00100...10010 11101…1010 00101...10110 000000...11101

Gold code initialised 

with ID of UE #2:

1110…01010 11010…1111 10100...11010 001011...111011

Initialisation/start of scrambling for UE#1 Initialisation/start of scrambling for UE#2


Figure 3: M-sequence initialisation in first CCE of each PDCCH.

3.3 Masking of shift register outputs before modulo-2 combining

In [3], it is also proposed to set the seed by using a mask applied on shift register outputs before the final modulo-2 combining, as shown in Figure 4.

As the m-sequence shift register content is not changed from one mask to another, UE-specific PDCCH scrambling is easily applied at the Node B by changing for each CCE the seed in the mask according to the UE ID of the UE which the PDCCH is intended for. Descrambling at the UE receiver is applied by keeping the same seed corresponding to the UE of interest in the mask for all CCEs. A single scrambling code is generated for all CCEs at both eNode B transmitter and UE receiver.

[image: image4.emf]Seed mask

Scrambling 

code


Figure 4: Scrambling generator using a seed mask.
4 Summary

We propose to include the UE ID in the seed of the scrambling generator in order to reduce the maximum complexity of blind detection.
For seed setting, we prefer solution 3.3, even if the additional complexity brought by solutions 3.1 and 3.2 is limited.

5 References

[1]
R1-080850, “UE specific PDCCH scrambling for blind detection complexity reduction,” Mitsubishi Electric, RAN1 #R2, Sorrento, February 2008.
[2]
R1-080405, “Blind detection complexity reduction with UE specific PDCCH scrambling,” Mitsubishi Electric, RAN1 #51bis, Sevilla, January 2008.
[3]
R1-080487, “Completing the scrambling details in the specifications,” Qualcomm Europe, RAN1 #51bis, Sevilla, January 2008.

[4]
RA-080318, “Scrambling sequence generation,” Nokia Siemens Network, Nokia, RAN1 #51bis, Sevilla, January 2008.





















































































































































































































































































































































































































































































































































































































































































































































- 3 -


_1263718327.vsd
CCE #1


CCE #2


CCE #3


CCE #4


CCE #5


CCE #6


CCE #7


CCE #8


UE #1


UE #2


Scrambling at eNode B


Descrambling at UE #1



_1263732725.vsd
Seed mask


Scrambling code



