
3GPP TSG RAN1#51bis, Sevilla, Spain, Jan 14 – 18, 2008 R1-080065

1

R1-080065: Uplink DM RS – Open Issues
Agenda Item: 6.1.2

3GPP TSG RAN1#51bis, Sevilla, Spain, Jan 14 – 18, 2008 R1-080065

2

RS Sequence Hopping for PUSCH and PUCCH

• Agreements from RAN1#50bis
– One bit in D-BCH indicates whether sequence hopping is enabled or not
– The selection applies to both PUCCH and PUSCH (not necessarily the same hopping

pattern)
– If hopping is disabled, the sequence group is indicated (5 bits for 30 groups)
– If hopping is enabled, the signaling of the hopping pattern is FFS (e.g. on D-BCH or

cell-specific)
– One sequence per group for allocations of up to 5 RBs

• Agreements from RAN1#51
– The number of hopping patterns for the base sequence groups is 504
– Number of sequences per base sequence group for allocations larger than 5 RBs:

• One sequence could be selected in case of base sequence group hopping.
• In case of planning: 2 sequences to enable sequence hopping within the sub-frame – this hopping

can also be disabled

• For Planning with no Sequence and Group hopping
– Should be possible to select one of the two base sequences for larger than 5RBs to

allow for larger reuse distance with desired cross-correlation
• Can re-use bits used for signaling the group hopping pattern and/or sequence hopping pattern

within a group when hopping is enabled

3GPP TSG RAN1#51bis, Sevilla, Spain, Jan 14 – 18, 2008 R1-080065

3

Cyclic Shift and Sequence Hopping for PUSCH DM RS
• Cyclic Shift hopping

– Cell may be assigned a subset of the available shifts (by higher layer
signaling) with different shifts assigned to different cells of a Node-B
(Kobe, RAN1#49)

– 3 bits in the UL grant (on PDCCH) indicate up to 8 cyclic shifts per
sequence

– Cyclic Shift (CS) hopping within the subset of shifts assigned to cell
– CS Hopping pattern (for a given RB allocation BW) function of (Base group

#, slot #, SFN)
– Same CS hopping pattern for all UEs with the same allocation BW within a

cell
• Shift/Sequence/Group hopping

– Should not be implicit from e.g. cell-ID to allow for planning/coordination
of hopping patterns

– Coordination of shift values among the cells of a Node-B or adjacent
Node-Bs using the same root sequence/group

3GPP TSG RAN1#51bis, Sevilla, Spain, Jan 14 – 18, 2008 R1-080065

4

PUCCH DM RS

• Agreements from Athens, Orlando, Kobe
– Support for sequence and/or cyclic shift hopping for PUCCH (ACK/NACK,

CQI)
– Cyclic shift hopping period per symbol
– Orthogonal covering hopping per slot for PUCCH ACK/NAK sub-frames

• Agreements from Jeju (#51)
– PUCCH sequence hopping is per slot

• revisit if there is a problem with respect to BER performance on ACK/NACK
– PUCCH Cyclic Shift and Orthogonal Cover Hopping

• PUCCH cyclic shift hopping (per symbol) is always enabled
• PUCCH orthogonal cover hopping (per slot) is always enabled

• Orthogonal covering for ACK/NACK RS and LB control data
• Modulated ZC sequence for data LB

– Cyclic shift, sequence hopping applicable for data LBs as well

3GPP TSG RAN1#51bis, Sevilla, Spain, Jan 14 – 18, 2008 R1-080065

5

Hopping for PUCCH RS and Control LBs (slide 1 of 2)
• Cell-specific Cyclic shift hopping within a slot (for RS and control LBs)

– If orthogonal covering used (ACK/NACK)
• Cyclic shift (CS) hopping within the same orthogonal code
• Same starting cyclic shift and orthogonal code index for RS and control LBs
• Same Hopping offset pattern for all (e.g. 6) cyclic shifts of a orthogonal code

– CS Hopping offset pattern function of (Cell ID, Sub-frame #, SFN)
– CS Hopping offset pattern possibly of length-N (N=# of SC-FDMA symbols/slot)
– CS Hopping pattern for initial-shift j = mod(j + hopping offset pattern, # of cyclic shifts)
– CS Hopping offset pattern for RS/control-LB subset (e.g. first 3/4 elements) of the hopping offset

pattern
• Same hopping offset patterns for different orthogonal codes

– Without orthogonal covering (e.g. CQI)
• CS Hopping offset pattern function of (Cell ID, Sub-frame #, SFN)
• Same pattern as with orthogonal covering case

• Cyclic shift hopping between slot 0 and slot 1
– Different starting cyclic shift but same hopping offset pattern as slot 0
– Starting cyclic shift in slot 1 function of (starting-shift in slot 0)

• Cell-specific Orthogonal code index hopping between slot 0 and slot 1
– Hopping offset pattern function of (Cell ID, Sub-frame #, SFN)

• Hopping offset pattern Cell-specific and not UE-specific

3GPP TSG RAN1#51bis, Sevilla, Spain, Jan 14 – 18, 2008 R1-080065

6

Hopping for PUCCH RS and Control LBs (slide 2 of 2)

• If PUSCH base sequence/group hopping enabled
– PUCCH sequence hopping is per slot (agreement from Jeju)
– PUCCH Base Sequence/group Hopping pattern same as that for PUSCH
– Hopping pattern not function of cell-ID to allow for planning/coordination

of hopping patterns

3GPP TSG RAN1#51bis, Sevilla, Spain, Jan 14 – 18, 2008 R1-080065

7

Cyclic shift Values for PUSCH, PUCCH and SRS
• For PUSCH, cell may be assigned a subset of the available shifts (by higher

layer signaling) with different shifts assigned to different cells of a Node-B
(Kobe, RAN1#49)

• Can define a sets of possible cyclic shift increment values
– e.g. ~[2.78us, 3.71us, 4.167us, 5.55us, 8.33us, 11.11us, 16.67us, 22.22us, 33.33us]

corresponding to [24, 18, 16, 12, 8, 6, 4, 3, 2] possible cyclic shifts
• The extreme values can be reserved for normal and extended CP respectively requiring 3-bits to

indicate the CS increment

• Define a set of possible fractional cyclic shift offset values
– e.g. ~[0 1/3 1/2 2/3] - 2 bits to indicate the CS offset

• Thus, the set of cyclic shifts that can be assigned to UEs in a cell
– possible cyclic shifts = (cyclic shift offset + k) * cyclic shift increment, k = 0 to [24,

18, 16, 12, 8, 6, 4, 3, 2] -1
– Can support less than 8 cyclic shifts with maximum separation

• Example: Node-B with 3 cells and 8 cyclic shifts/cell with spacing (increment)
= 8.33us

– Cell A: fractional offset = 0, shifts = 0, 8.33, 16.67, 25, 33.33, 41.67, 50, 58.33 us
– Cell B: fractional offset = 1/3, shifts = 2.78, 11.11, 19.45, 27.78, 36.11, 44.45, 52.78,

61.11us
– Cell C: fractional offset = 2/3, shifts = 5.55, 13.89, 22.22, 30.56, 38.89, 47.22, 55.56,

63.89us
• Cell broadcasts (D-BCH) cyclic shift offset and cyclic shift increment

3GPP TSG RAN1#51bis, Sevilla, Spain, Jan 14 – 18, 2008 R1-080065

8

Cyclic shift Values cont.

• For PUCCH, as has been agreed in Shanghai (R1-074491), different
orthogonal covers can have different fractional cyclic shift offset

• Cyclic shift indicator (3 bits) in UL Grant indicate the cyclic shift
assigned to a UE

• For specifying the cyclic shift in 36.211, section 5.5.1
– s_i = [24, 18, 16, 12, 8, 6, 4, 3, 2], possible cyclic shift increment values
– s_o = [0 1/3 1/2 2/3], possible fractional cyclic shift offsets
– Phase alpha = 2*pi*(s_o + k)/s_i
– Where k is the 3-bit cyclic shift (in decimal) signaled to the UE

3GPP TSG RAN1#51bis, Sevilla, Spain, Jan 14 – 18, 2008 R1-080065

9

Conclusions

• PUSCH DM RS
– For Planning with no Sequence and Group hopping

• Should be possible to select one of the two base sequences for larger than 5RBs to
allow for larger reuse distance with desired cross-correlation

– Can re-use bits used for signaling the group hopping pattern and/or sequence hopping
pattern within a group when hopping is enabled

– Base sequence/shift/group hopping pattern not function of cell-ID to
allow for planning/coordination of hopping patterns

• Explicit signaling through D-BCH
• PUCCH DM RS and control LBs

– Cell-specific cyclic shift hopping pattern
• Same Hopping offset pattern for all (e.g. 6) cyclic shifts and different orthogonal codes

– PUCCH Base Sequence/group Hopping pattern same as that for PUSCH
• Cyclic Shift Values for PUSCH, PUCCH, and SRS

– Cell broadcasts (D-BCH) cyclic shift offset and cyclic shift increment
– possible cyclic shift increment values [2.78us, 3.71us, 4.167us, 5.55us,

8.33us, 11.11us, 16.67us, 22.22us, 33.33us]
– possible fractional cyclic shift offset values [0 1/3 1/2 2/3]
– possible cyclic shifts = (cyclic shift offset + k) * cyclic shift increment

