3GPP TSG RAN1 #48

 R1-071210
St. Louis, USA
February 12 – 16, 2006

Agenda Item:

6.9.2
Source:

Motorola

Title:
Performance of convolutional codes for the E-UTRA DL Control Channel
Document for:

Discussion and Decision
1. Introduction

In R1-070786 [2], it was shown that tail-biting can significantly reduce control channel overhead (approximately 17~20%) while incurring only a marginal increase in decoding complexity and slight performance degradation on the order of 0.5 dB at the 1% BLER operating point.
This contribution shows that using tail bits with puncturing leads to performance degradation by about 0.5 dB. Instead, the same reduction in control channel overhead can be obtained without sacrificing performance using tail-biting.

The tailed and tail-biting convolutional encoders are compared assuming equal control channel overhead.

· Tail-biting coding – For an input of size K bits, the resulting output codeword is of size K/R, where R is the code rate of the convolutional coder.

· Coding with tail bits – For an input of size K bits, the resulting output codeword is of size (K+8)/R, where R is the code rate of the convolutional coder, wherein 8/R bits correspond to the tail bits generated to drive the 256-state convolutional encoder [1] back to all zero state. For equal control channel overhead as tail-biting case, 8/R bits must be punctured when coding with tail bits. This solution was suggested in R1-071004 [3].
2. Tail-biting Convolutional Encoder
Tail-biting ensures that the final state (after encoding an information block) of a convolutional encoder is the same as the initial state. Tail-biting eliminates tail bits which can otherwise cause increased control channel overhead. When the convolutional encoder has a feed-forward structure (such as the 256-state convolutional code defined in [1]), it can easily be made tail-biting without incurring additional encoding latency. For the 256-state CC, this is done by initializing the shift register state with the last 8 bits of the information block, [bK-7, bK-6, …, bK-1, bK], where K is the information block length. The decoder for tail-biting CC can be implemented using conventional techniques such as the Viterbi Algorithm.
3. Simulation results
Figure 1 and Figure 2 show the FER comparison of the two methods for information block size K = 32, 40 and 48 bits (Red indicates tailbiting and blue indicates tail bits with puncturing). The simulations are performed using QPSK and an AWGN channel. The tail-biting code simulations were performed with two decoding iterations. In case of the tailed code, a puncturing pattern that would puncture periodically is used (i.e. every K/8+1 bit from the encoder output).

The results show that tail-biting can provide approximately 0.5 dB performance improvement. Due to large constraint length, increasing the number of iterations for these block sizes may lead to further performance enhancements for tail-biting.
4. Conclusions
In this contribution, tail-biting is proposed for control channel coding.
5. References

[1] 3GPP TS 25.212 v6.4.0 (2005-03): “Multiplexing and Channel Coding (FDD) (Release 6)”.
[2] R1-070786, Motorola, “E-UTRA DL Coding Performance for Control Channel,” RAN1#48, St. Louis, USA, January 2007.
[3] R1-071004, Nokia, “About Decoding Complexity of the Downlink Control Channel,” RAN1#48, St. Louis, USA, January 2007.
[image: image1.wmf]
Figure 1. Rate-1/2 tail vs tail-biting convolutional code comparison for K-32, 40 and 48 information bits.

[image: image2.wmf]
Figure 2. Rate-1/3 tail vs tail-biting convolutional code comparison for K-32, 40 and 48 information bits.

