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1 Introduction 
 

Turbo coding was suggested for 3GPP LTE channel coding. For this coding system, 
algebraic interleave, almost regular permutation (ARP) [3], is considered as one of the 
candidates. On the other hand, due to the high data throughput and large block size for 
LTE parallel decoding of turbo code becomes necessary. One of the major problems 
of parallel decoding is the contention-free memory accessing. In [1], it is shown that 
there always exists a contention-free memory mapping for parallel decoding of any 
degree. However, there is no general and algebra construction of contention-free 
mapping for any interleave. In [3] and [4], a memory mapping for the interleave ARP 
is mentioned. But, as it is shown in this document, this mapping is not contention-free 
except for the block size L satisfying gcd(L,C)=1 where C is the degree of parallelism. 
In fact, the mappings for all the examples in [3-4] are not contention-free. We also 
prove that the memory mapping defined in [2] is also not contention-free for ARP 
except for some special cases.  However, the channel coding in 3GPP LTE needs 
supply a range of block sizes. Therefore, a new memory mapping is needed for ARP 
of any block sizes. 

In this document, we propose a general and algebraic contention-free memory 
mapping for ARP with arbitrary block size. The proof of the contention-free property 
of the proposed memory mapping is also given.  With this contention-free mapping, 
we enable parallel decoding of turbo codes with interleave ARP of all possible block 
sizes.  

2 Parallel Turbo decoding and contention-free 
memory mapping 

Consider decoding a turbo code with information size L. Let C be an integer such that 
C is a divisor of L. Then L=CW. To carry on a parallel decoding with degree C, i.e. 
with C parallel processors, one has to partition the size L information sequence to C 
subsets such that every subset contains W symbols. Since turbo code uses 
convolutional encoder as its constituent encoder, the consecutive symbols are 
connected through the states and therefore the subset has to contain W consecutive 
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symbols. We can call this subset a window segment of the whole information block 
and call the number W the window size of that segment.  Now C processors decode C 
window segments in parallel. Let index set of the information sequence be 

}1,,1,0{ −= LI L  and the index set of the interleaved information sequence be 
)}1(,),1(),0({)( −= LI ππππ L . Then the index sets of the C window segments for 

I  are  

}1,1)1(,)1{(,},1)1(,1,{},1,,1,0{ −+−−−++− CWWCWCWjjWjWW KLKLK

 

see Fig.1 and the index sets of the C window segments for the index set )(Iπ  are  

 

Let  

})1(,,,,,{ iWCijWiWiEi +−++= KK , 

i.e. the set of the i-th elements in C window segments. In fact, at i-th cycle, the C 
decoders are working respectively on the C symbols in this index set.  Therefore, we 
call this set the index set at i-th decoding cycle. Similarly, we define  

)})1((,),(,),(),({ˆ iWCijWiWiEi +−++= ππππ KK  

 

                           

Fig. 1 Parallel turbo decoding 

Then as defined in [1] a map M  defined from the index set I and  )(Iπ  to the set 
}1,,1,0{ −= CZC K   is called a contention-free mapping for parallel decoding with 

degree C  if it satisfy the following condition: for every jjLjj ′≠−∈′ },1,,0{, L    

 )()(, jjEjj
i

′≠⇒∈′ MM   and 

                                )()(ˆ, jjEjj
i

′≠⇒∈′ MM                                        (EQ-1) 

in other words, the integers belonging to the index set at i-th decoding cycle subset 
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should be mapped to different memory banks.  
 
In [1], it is proved that for any given interleave there always exists a contention-free 
mapping for parallel decoding of any degree.  However, [1] does not give a general 
formula to find contention-free memory mapping. Therefore, to find a general and 
algebra contention-free mappings for interleaves with a range of block sizes is still a 
problem so far.  

In [2], a contention-free mapping is given for some turbo code interleave π, which 
maps )( ijW +π  to ⎣ ⎦WijW /)( +π  and )(1 ijW +−π  to ⎣ ⎦WijW /)(1 +−π , 
where W is the window size. We call this map a division mapping. In fact, the 
mapping can be represented by  

⎣ ⎦Wii
DIV

/: aM                                        (EQ-2) 

3 Almost regular permutation (ARP) 
In [3] a regular permutation is defined as circular permutation, based on congruence 
properties. Circular permutation π, for blocks having L information symbols, is 
devised as follows. The data are read out such that the j-th datum read was written at 
the position i given by: 

    LjPji mod)( == π                                              (EQ-3) 
 

where the skip value P is an integer, prime with L. The almost regular permutation 
(ARP) of size CWL = (i.e. C is a divider of L) introduced in [3] is defined by 
modifying (EQ-3) to the following 
 

      LCjBPCjAjPji mod)mod()mod()( ++==π                  (EQ-4) 
 
Where )(xA  and )(xB  is integer function defined on }1,,1,0{ −CL . In this document 
we call C the period of the ARP. To insure the function defined in (EQ-4) is a 
permutation (i.e. one to one and on to), in [3]  )(xA  and )(xB  are further restricted to 
 
                             )]mod()mod([)()( CjPCjCjBPjA βα +=+ . 
 
Example 1 Let 4,24 == CL  and 7=P . Define 
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is an ARP of size 24 such that 



R1-063243 4

(π(0), π(1), π(2), …π(22), π(23))  = 
(0,11,22,5,4,15, 2,9,8,19,6,13, 12,23,10,17,16,3, 14,21,20,7,18,1) 

 
 

 
Document R1-051310 [4] modified (EQ-4) for the period C=4 to the following 

              LDjPji mod3)4(mod)( ++== π                                       (EQ-5) 

where the function D  is defined by:` 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=+
=+
=
=

=

4mod34
4mod24
4mod1
4mod00

)4mod(

3

2

1

jifQP
jifQP
jifQ
jif

jD  

However, as pointed out in [3] if Q1,Q2 and Q3 is not a multiple of 4, the function in 
(EQ-5) may not be a permutation. In fact the Q’s in examples given in [4] are all 
chosen to be multiple of 4.   

 

4 Contradictions on contention-free memory mapping 
given in [3] and [4] 

Consider ARP π defined in (EQ-4) or (EQ-5) with period C=4. It is easy to see that 
4mod)34(,4mod)24(,4mod)14(,4mod)4( +++ llll ππππ  are different. With 

this conclusion [3] and [4] suggest the following parallel decoding method which it is 
claimed to have contention-free. “the circle can be evenly divided into four parts, or 
quadrants, four Soft-in/ Soft-Out (SISO) (forward or backward) processors are 
assigned to the four quadrants of the circle under process. At the same time, the four 
units deal with data that are located at places corresponding to the four possible 
congruencies. For each clock period, the processors will change quadrants through 
cyclic shifts and two processors will therefore never access the same quadrant.”  
 
According to this claim, the memory mapping, we called modular memory mapping, 
should be defined by  

Cii
MOD

mod: aM                                      (EQ-6) 
 

where C is the period of the ARP. 
 
Consider parallel decoding with degree C, then the index sets at the i-th decoding 
cycle are  
 

}1,,0,{ −=+= CjijWE
i

L   and 1,,0},1,,0),({ˆ −=−=+= WiCjijWE
i

LLπ . 
       
where W is the window size. Thus, if 

MOD
M is contention-free, the C elements in 

iE or iÊ have to be distinct. That is  
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}1,,1,0{mod −= CCE
i

L  and }1,,1,0{modˆ −= CCE
i

L . 
 
However, the following example shows the contrast. 
 
Example 2 (continue of Example 1) 
 
The ARP of size L=24 and C=4 and window size =6 is defined by 

(π(0), π(1), π(2), …π(22), π(23))  = 
(0,11,22,5,4,15, 2,9,8,19,6,13, 12,23,10,17,16,3, 14,21,20,7,18,1) 

                             }2,0{}14,12,2,0{ˆ},2,0{}18,12,6,0{
4mod

0

4mod

0 →=→= EE   

}3,1{}21,23,9,11{ˆ},3,1{}19,13,7,1{
4mod

1

4mod

1 →=→= EE  

     }2,0{}20,10,8,22{ˆ},2,0{}20,14,8,2{
4mod

2

4mod

2 →=→= EE  

}3,1{}7,17,19,5{ˆ},3,1{}21,15,9,3{
4mod

3

4mod

3 →=→= EE  

   }2,0{}18,16,6,4{ˆ},2,0{}22,16,10,4{
4mod

4

4mod

4 →=→= EE  

}3,1{}1,3,13,15{ˆ},3,1{}23,17,11,5{
4mod

5

4mod

5 →=→= EE  
Thus, 

MOD
M  does not map the index set of i-th parallel decoding cycle to distinct 

memory banks. Thus 
MOD

M  is not contention-free for this ARP, see Fig. 2. 
□ 

 
 

Fig. 2 Example 2 
 

In fact, when gcd(W,C) ≠1 i.e. the window size of the parallel decoding is not prime 
to the parallel degree, the memory mapping 

MOD
M  is not contention-free. This can be 

proved as follows.  
 
Let 1),gcd( >= aCW . Then CaC ′= and CC <′ . This implies 0mod =′ CWC . 
Therefore )()( WCii MODMOD ′+=MM , where iEWCii ∈+ ', and WCii ′+≠ , which 
shows the mapping is not contention free as claimed in [3] and [4].  
 
ARP given in the examples of [3] with L=5472= 12*456 (C=12, W=456) and 
L=408=4*102 (C=4, W=102) and ARP given in the examples of [4] with 
L=320=4*80 (C=4, W=80) and L=640=4*160 (C=4, W=160) all have gcd(W,C) ≠1. 
Therefore, the memory mapping 

MOD
M  is not contention-free for those ARP.  

 
Consider the memory mapping 

DIV
M  (EQ-2) given in [2]. One can prove that the 

DIV
M  is contention free for ARP only in the case gcd(W,C)=W or C.  

π: 

Memory 

0,1,2,3,4,5    6,7,8,9,10,11   12,13,14,15,16,17  18,19,20,21,22,23 

0,11,22,5,4,15   2,9,8,19,6,13  12,23,10,17,16,3  14,21,20,7,18,1 

   0     1    3     2  Collisions
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Example 3 (continue of Example 2) 
 
The ARP of size L=24 and C=4 and W =6 is defined by 

(π(0), π(1), π(2), …π(22), π(23))  = 
(0,11,22,5,4,15, 2,9,8,19,6,13, 12,23,10,17,16,3, 14,21,20,7,18,1) 

We have gcd(W,C)=2 (≠W,C). In fact, 

}2,0{}14,12,2,0{ˆ
0

DIV

E
M

→= , }3,1{}21,23,9,11{ˆ
1

DIV

E
M

→=  

}3,1{}20,10,8,22{ˆ
2

DIV

E
M

→=  }2,0{}1,3,13,15{ˆ
5

DIV

E
M

→=  
Thus, 

DIV
M  does not map the index set of i-th parallel decoding cycle to distinct 

memory banks. Thus 
DIV

M  is not contention-free for this ARP. 
□ 

 
Example 4 ([3]) L=408=4*102 (C=4, W=102) with gcd(W,C)=2 (≠W,C). Using the 
interleave π given in [3], the index set at 0-th parallel decoding cycle  becomes  
                             }278,204,74,0{)}3(),2(),(),0({ˆ

0 == WWWE ππππ   
 
Since  2)3(,2)2(,0)(,0)0(

=⎥⎦
⎥

⎢⎣
⎢=⎥⎦

⎥
⎢⎣
⎢=⎥⎦

⎥
⎢⎣
⎢=⎥⎦

⎥
⎢⎣
⎢

W
W

W
W

W
W

W
ππππ ,  

DIV
M  will map 4 elements 0Ê to 

two memory banks. This causes a collision. Therefore, the mapping is not contention-
free for this ARP. 

□ 
 

5 A more generalized definition of ARP 
In the following, we generalize the ARP definition by combining [3] and [4].  

Let L be the interleave size and C  be a divider of L . Let P  be an integer prime to L . 
We can write CWL = . Now denote CWw mod= . Let )(xA  and )(xB  be integer 
functions defined on the set }1,,0{ −CL  such that  

        CyBPyACxBPxA mod))()((mod))()(( +=+  if wyx mod=                 (EQ-7) 

Furthermore, let }1,,0{ −∈ CKθ .  An ARP π  of size L is defined by 

  }1,,0{,mod)mod()mod()( −∈+++= LjLCjBPCjAPjj Kθπ       (EQ-8) 
 

Moreover, to insure π is a permutation, the condition )()( jj ′≠ ππ  when jj ′≠  must 
be satisfied.  In fact, as pointed out in [3], by taking )()(),()( vCvBvCvA βα ==  (as 
defined in [3]), one can show that π  is indeed a permutation.   
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6 Contention-free mapping for ARP of arbitrary size 
Let π be an ARP interleave of size CWL = defined in (EQ-8) with 

1),gcd(),gcd( == CPLP . To parallel decode a turbo code with this interleave and 
parallel degree C, the index sets at i-th decoding cycle should be  

          }1,,0|)({ˆ},1,,0|{ −=+=−=+= CjijWECjijWE ii KK π              (EQ-9) 

where W  is the size of  a window segment that one of the C decoding processor will 
work on.   Let q be the smallest positive integer such that   CqW mod0= .  

Definition 1 The memory mapping BM from UUK
1

0

1

0

ˆ}1,,1,0{
−

=

−

=

==−
W

j
j

W

j
i EEL to 

}1,,1,0{ −CK  is defined by 

                                     C
qW

xxxB mod)(: ⎥
⎦

⎥
⎢
⎣

⎢
+aM                                       (EQ-10) 

Remark In general (EQ-10) can be replaced by  

                           Cxx
qW

xB mod)(:
⎥
⎦

⎥
⎢
⎣

⎢+ ηaM                                    (EQ-11) 

Where }1,,1,0{},,{ 10 −=− fC C
f

KL ηη , where fqCC =  

Theorem 1 BM is a contention-free mapping for ARP with any interleave size, i.e. 
for every jjLjj ′≠−∈′ },1,,0{, L   

)()(, jjEjj BBi ′≠⇒∈′ MM  and )()(ˆ, jjEjj BBi ′≠⇒∈′ MM              

Proof (Upon request). 

□ 

Example 5 (Continuation of Example 3) 4,24 == CL . Then 6=W . We have 
2=q . Thus 12=qW . Then 

}2,0,2,0{}18,12,6,0{
4mod

0 →=E
⎣ ⎦

}1,1,0,0{}18,12,6,0{
12

0

x

E →=
⎣ ⎦

}3,1,2,0{}18,12,6,0{
12

0

xx

E
+

→=  

}3,1,3,1{}19,13,7,1{
4mod

1 →=E  
⎣ ⎦

}1,1,0,0{}19,13,7,1{
12

1

x

E →=  
⎣ ⎦

}0,2,3,1{}19,13,7,1{
12

1

xx

E
+

→=  

}0,2,0,2{}20,14,8,2{
4mod

2 →=E
⎣ ⎦

}1,1,0,0{}20,14,8,2{
12

2

x

E →=
⎣ ⎦

}1,3,0,2{}20,14,8,2{
12

2

xx

E
+

→=  

}1,3,1,3{}21,15,9,3{
4mod

3 →=E
⎣ ⎦

}1,1,0,0{}21,15,9,3{
12

3

x

E →=  
⎣ ⎦

}2,0,1,3{}21,15,9,3{
12

3

xx

E
+

→=  

}2,0,2,0{}22,16,10,4{
4mod

4 →=E
⎣ ⎦

}1,1,0,0{}22,16,10,4{
12

4

x

E →=
⎣ ⎦

}3,1,2,0{}22,16,10,4{
12

4

xx

E
+

→=  

}3,1,3,1{}23,17,11,5{
4mod

5 →=E
⎣ ⎦

}0,2,3,1{}23,17,11,5{
12

5

x

E →=  
⎣ ⎦

}0,2,3,1{}23,17,11,5{
12

5

xx

E
+

→=  
That means for 1,,0 −= Wi K , }3,2,1,0{)( =iB EM . 
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On the other hand,  

}2,0,2,0{}14,12,2,0{ˆ 4mod

0 →=E
⎣ ⎦

}1,1,0,0{}14,12,2,0{ˆ 12

0

x

E →=
⎣ ⎦

}3,1,2,0{}14,12,2,0{ˆ 12

0

xx

E
+

→=  

}1,3,1,3{}21,23,9,11{ˆ 4mod

1 →=E
⎣ ⎦

}1,1,0,0{}21,23,9,11{ˆ 12

1

x

E →=
⎣ ⎦

}2,0,1,3{}21,23,9,11{ˆ 12

1

xx

E
+

→=  

}0,2,0,2{}20,10,8,22{ˆ 4mod

2 →=E
⎣ ⎦

}1,0,0,1{}20,10,8,22{ˆ 12

2

x

E →=
⎣ ⎦

}1,2,0,3{}20,10,8,22{ˆ 12

2

xx

E
+

→=  

}3,1,3,1{}7,17,19,5{ˆ 4mod

3 →=E
⎣ ⎦

}0,1,1,0{}7,17,19,5{ˆ 12

3

x

E →=
⎣ ⎦

}3,2,0,1{}7,17,19,5{ˆ 12

3

xx

E
+

→=

}2,0,2,0{}18,16,6,4{ˆ 4mod

4 →=E
⎣ ⎦

}1,1,0,0{}18,16,6,4{ˆ 12

4

x

E →=
⎣ ⎦

}3,1,2,0{}18,16,6,4{ˆ 12

4

xx

E
+

→=

}1,3,1,3{}1,3,13,15{ˆ 4mod

5 →=E
⎣ ⎦

}0,0,1,1{}1,3,13,15{ˆ 12

5

x

E →=
⎣ ⎦

}1,3,2,0{}1,3,13,15{ˆ 12

5

xx

E
+

→=  

That means for 1,,0 −= Wi K , }3,2,1,0{)ˆ( =iB EM .  
Thus BM  is contention-free mapping for this ARP. 

□ 

Example 7 (Mapping in [3]) L=5472, C=12, P=97. Then the window size W=456 and 
0mod =CW . Thus 1=q . Then 

                                            79,,0},11,,0|456{ LK ==+= irirEi   

with }{mod iCEi = . Moreover, 11,,0,)( K==⎥⎦
⎥

⎢⎣
⎢ + rrW

irW . Then,  

}1,0{}11,,0|12){()( −==+= CjmojiEiB KKM . 
 
On the other hand, we have LCiBPCiAPirWirW mod)]mod()mod()[()( +++=+π  
with )mod()mod( CiBPCiA + defined in the following table, where we denote 

Cik i mod= . 

i
k  )mod()mod( CiBPCiA +
0,8 0 
1 24 
2,6 4P+16=404 
3,11 4P+24+12P+12=1588 
4 12P+12=1176 
5,9 24+12P+12=1200 
7 4P+24=412 
10 4P+16+12P+12=1580 

 

Thus .mod)]()([mod)( CiBPiAiPCirW ++=+π  Therefore, 

             }mod)]()({[}1,,0|)({modˆ CiBPiAiPCrirWCE
i

++=−=+= Kπ , 

CWiBPiAiPrWCWiBPiAiPrWPirW mod)]()([mod)]()([)( +++=+++=+π  

Let )()()( iWkCi γπ +−= with W<≤ γ0 , we have  
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                    1,,0),()()( −=++−=+ kjiWjkCijW Kγπ  and 

                    1,,),()()( −=+−=+ CkjiWkjijW Kγπ  

Thus }.1,,1,0{}1,0|mod)({ −=−=⎥⎦
⎥

⎢⎣
⎢ + CCrCW

irW KKπ  Therefore, 

      }.1,,1,0{}1,,0|mod))()()({()ˆ( −=−=+++⎥⎦
⎥

⎢⎣
⎢ += CCrCiBiAiPW

irWEiB KKπM  

Thus BM  is a contention-free mapping for this ARP. 

□ 

With the same ARP of period C, one can carry on parallel decoding of degree mC 
when mC|L. In this case Definition 1 and Theorem 1 can be extended. To do this, we 
need modify the index set at i-th decoding cycle and other numbers. 

Let π be an ARP interleave of size CWL = defined in (EQ-8) with 
1),gcd(),gcd( == CPLP . Let m be a positive integer such that mC|L. We define 

mC
LWm =  and define the corresponded index set at the i-th decoding cycle by 

}1,,0|)({)(ˆ},1,,0|{)( −=+=−=+= mCjijWmEmCjijWmE mimi KK π          (EQ-12) 

Let  qm be the smallest positive integer such that  mCWq mm mod0=  .  

 

Definition 2 The memory mapping EBM from  

                         )(ˆ)(}1,,1,0{
1

0

1

0

mEmEL
mm W

j
j

W

j
i UUK

−

=

−

=

==−   to }1,,1,0{ −mCK   

is defined by 

                                     C
Wq
xxx

mm
EB mod)(: ⎥

⎦

⎥
⎢
⎣

⎢
+aM                           (EQ-13) 

 

Remark In general (EQ-13) can be replaced by  

                                 Cxx
mmWq

xEB mod)(:
⎥
⎦

⎥
⎢
⎣

⎢+ηaM                               (EQ-14) 

where }1,,1,0{},,{ ,10 ,
−=− mfC C

mf
KL ηη , where mfmCqmC ,=  

Theorem 2 EBM is a contention-free mapping, i.e. for every 
jjLjj ′≠−∈′ },1,,0{, L   

)()()(, jjmEjj EBEBi ′≠⇒∈′ MM  and )()()(ˆ, jjmEjj EBEBi ′≠⇒∈′ MM              
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Proof  Similar to the proof of Theorem 1. 

Example 8 (Continuation of Example 7) 4,24 == CL . Consider parallel decoding 
of degree 8, we have m=2 and mC=8. Then 32 =W , 82 =q  and 2422 =Wq . Thus 

⎣ ⎦ 024 =x  for 10 −≤≤ Lx .  Therefore the extended mapping becomes 

8mod: xxECF aM .  We have 

}5,2,7,4,1,6,3,0{}21,18,15,12,9,6,3,0{)2(
8mod

0

 
E →=  

}6,3,0,5,2,7,4,1{}22,19,16,13,10,7,4,1{)2(
8mod

1

 
E →=  

}7,4,1,6,3,0,5,2{}23,20,17,14,11,8,5,2{)2(
8mod

2

 
E →=  

}7,6,1,4,3,2,5,0{}7,14,17,12,19,2,5,0{)2(ˆ 8mod

0

 
E →=  

}2,5,0,7,6,1,4,3{}18,21,16,23,6,9,4,11{)2(ˆ 8mod

1

 
E →=  

}1,4,3,2,5,0,7,6{}1,20,3,10,13,8,15,22{)2(ˆ 8mod

2

 
E →=  

That is to say for 2,1,0=i , }7,6,5,4,3,2,1,0{))2(( =iEB EM  and 

 }7,6,5,4,3,2,1,0{))2(ˆ( =iB EM . Thus EBM  is a contention-free mapping for this ARP. 

 

 

7 Conclusion 
It is shown in this document that for many block size the memory mappings given in 
[3-4] and [2] is not contention-free for the interleave defined by ARP. We then 
proposed a general contention-free mapping for ARP of arbitrary block size.  This 
mapping is algebraic and can be used in the 3GPP LTE turbo coding.  
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