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1 Introduction

Turbo coding was suggested for 3GPP LTE channel coding. For this coding system,
algebraic interleave, almost regular permutation (ARP) [3], is considered as one of the
candidates. On the other hand, due to the high data throughput and large block size for
LTE parallel decoding of turbo code becomes necessary. One of the major problems
of parallel decoding is the contention-free memory accessing. In [1], it is shown that
there always exists a contention-free memory mapping for parallel decoding of any
degree. However, there is no general and algebra construction of contention-free
mapping for any interleave. In [3] and [4], a memory mapping for the interleave ARP
is mentioned. But, as it is shown in this document, this mapping is not contention-free
except for the block size L satisfying ged(L,C)=1 where C is the degree of parallelism.
In fact, the mappings for all the examples in [3-4] are not contention-free. We also
prove that the memory mapping defined in [2] is also not contention-free for ARP
except for some special cases. However, the channel coding in 3GPP LTE needs
supply a range of block sizes. Therefore, a new memory mapping is needed for ARP
of any block sizes.

In this document, we propose a general and algebraic contention-free memory
mapping for ARP with arbitrary block size. The proof of the contention-free property
of the proposed memory mapping is also given. With this contention-free mapping,
we enable parallel decoding of turbo codes with interleave ARP of all possible block
sizes.

2 Parallel Turbo decoding and contention-free
memory mapping

Consider decoding a turbo code with information size L. Let C be an integer such that
C 1s a divisor of L. Then L=CW. To carry on a parallel decoding with degree C, i.e.
with C parallel processors, one has to partition the size L information sequence to C
subsets such that every subset contains W symbols. Since turbo code uses
convolutional encoder as its constituent encoder, the consecutive symbols are
connected through the states and therefore the subset has to contain W consecutive
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symbols. We can call this subset a window segment of the whole information block
and call the number W the window size of that segment. Now C processors decode C
window segments in parallel. Let index set of the information sequence be
| ={0,1,---,L—1} and the index set of the interleaved information sequence be

(1) ={7(0),7z(1),---,7(L —1)}. Then the index sets of the C window segments for
| are

(0,1, W =1, { W, jW +1,...(j + DW =1}, {(C = DW,(C =W +1...,CW — 1}

see Fig.1 and the index sets of the C window segments for the index set z(l) are

7(0),, .oy W =1 1)} {2 (GW), Z(GW + 1), .. 72((j + DW =)}, {2((C=DW),..., Z(CW 1)}

Let
E ={W+i,..., JW+i,..,(C-DW +1i},

i.e. the set of the i-th elements in C window segments. In fact, at i-th cycle, the C
decoders are working respectively on the C symbols in this index set. Therefore, we
call this set the index set at i-th decoding cycle. Similarly, we define

E, = {z(i),7(W +i),...,7(jW +i),...,7((C =W +i)}

. 0 1 2 W-1
Parallel window 0
) w W+1 W+2 W+W-1
Parallel window 1
(C-1)W (c- (c- (c-
1)W+1 1)W+2 e 1)W+W-
1
Decoding Decoding Decoding Decoding
Index set at the i-th E, = (OW, . C— W)

E ={i,W +i,-,(C =)W +i}

decodina cvcle

Fig. 1 Parallel turbo decoding

Then as defined in [1] a map C#¢ defined from the index set | and 7z(1) to the set
Z.=1{0,1,...,C—1} is called a contention-free mapping for parallel decoding with

degree C if it satisfy the following condition: for every j, j'€{0,---,L -1}, j# |’
J,J'e E =M (j)= (] and
j,ji’€E =>ci(j)=H(j) (EQ-1)

in other words, the integers belonging to the index set at i-th decoding cycle subset
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should be mapped to different memory banks.

In [1], it is proved that for any given interleave there always exists a contention-free
mapping for parallel decoding of any degree. However, [1] does not give a general
formula to find contention-free memory mapping. Therefore, to find a general and
algebra contention-free mappings for interleaves with a range of block sizes is still a
problem so far.

In [2], a contention-free mapping is given for some turbo code interleave m, which
maps 7(JW +1) to | Z(jW +1)/W | and 77 (JW +i) to |7 '(GW +i)/W |,

where W is the window size. We call this map a division mapping. In fact, the
mapping can be represented by

M, i [1/W ] (EQ-2)

DI

3 Almost regular permutation (ARP)

In [3] a regular permutation is defined as circular permutation, based on congruence
properties. Circular permutation m, for blocks having L information symbols, is
devised as follows. The data are read out such that the j-th datum read was written at
the position i given by:

I=7z(])=]JP modL (EQ-3)
where the skip value P is an integer, prime with L. The almost regular permutation
(ARP) of size L=CW (i.e. C is a divider of L) introduced in [3] is defined by
modifying (EQ-3) to the following

i=7(]))=JP+A(jmodC)P+B(jmodC) modL (EQ-4)

Where A(X) and B(X) is integer function defined on{0,1,---,C —1} . In this document
we call C the period of the ARP. To insure the function defined in (EQ-4) is a
permutation (i.e. one to one and on to), in [3] A(X) and B(X) are further restricted to

A(J)P+B(j)=Cla(jmodC)P + S(jmodC)].

Example 1 Let L =24,C =4 andP =7. Define

0 j=0 0 j=0
a={, 17 =t 17
4 =2 4 =2
j= 4 j=

jPmod L if j=0mod4

(JP+4)mod L if j=1mod4

i) = jP+A(jmodC)P +B(jmodC) =
FN= P AUmd@PEBUMIE) =1 o\ 4p ymodL it j=2mod4
(jP+4P+4modL  if j=3mod4

1s an ARP of size 24 such that
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((0), n(1), m(2), ...n(22), n(23)) =
(0,11,22,5,4,15,2,9.8,19,6,13, 12,23,10,17,16,3, 14,21,20,7,18,1)

Document R1-051310 [4] modified (EQ-4) for the period C=4 to the following
i=7())=jP+D(mod4)+3 modL (EQ-5)
where the function D is defined by:"

0 if j=0mod4
Q if  j=1mod4
4P +Q, if j=2mod4
4P +Q, if j=3mod4

D(jmod4) =

However, as pointed out in [3] if Q;,Q, and Q3 is not a multiple of 4, the function in
(EQ-5) may not be a permutation. In fact the Q’s in examples given in [4] are all
chosen to be multiple of 4.

4 Contradictions on contention-free memory mapping
given in [3] and [4]

Consider ARP & defined in (EQ-4) or (EQ-5) with period C=4. It is easy to see that
z(4l)mod4, 7(4l +1)mod4, z(4l + 2)mod4, 7(4l +3)mod4 are different. With

this conclusion [3] and [4] suggest the following parallel decoding method which it is
claimed to have contention-free. “the circle can be evenly divided into four parts, or
quadrants, four Soft-in/ Soft-Out (SISO) (forward or backward) processors are
assigned to the four quadrants of the circle under process. At the same time, the four
units deal with data that are located at places corresponding to the four possible
congruencies. For each clock period, the processors will change quadrants through
cyclic shifts and two processors will therefore never access the same quadrant.”

According to this claim, the memory mapping, we called modular memory mapping,
should be defined by

SH i imodC (EQ-6)

where C is the period of the ARP.

Consider parallel decoding with degree C, then the index sets at the i-th decoding
cycle are

E ={jW+i,j=0,---,C -1} and £ = (7(jW +i),j=0,---,C —1},i=0,---,W —1-
where W is the window size. Thus, if (y(/fM - is contention-free, the C elements in

E, or éi have to be distinct. That is
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E modC ={0,1,---,C—1} and E mod C = {0,1,---,C —1}.
However, the following example shows the contrast.

Example 2 (continue of Example 1)

The ARP of size L=24 and C=4 and window size =6 is defined by
(m(0), n(1), (2), ...7(22), m(23)) =
(0,11,22,5,4,15,2,9,8,19,6,13, 12,23,10,17,16,3, 14,21,20,7,18,1)

E, =1{0,6,12,18} “T;{O,Z}, éo ={0,2,12,14} “T;{O,Z}
E = {71319 o> {131,E, = {119.2321} = {1,3}
E, = {2.814.20} - {0.21,E, = {22.810,20} - {0,2}
E, = 39,1521} o> {131, E, = (5,19,17,7} —> {13}
E, = {410,16,22} -5 {0.2},E, = {4,6,16,18} —> {0,2}
E. = (5,1117,23} o> {131, E. = {15,13,3,1} > {1.3}
Thus, ()([M . does not map the index set of i-th parallel decoding cycle to distinct

memory banks. Thus @(/fM . is not contention-free for this ARP, see Fig. 2.

0,1,2,3,45 |6,7,8,9,10,11 |12,13,14,15,16,17 18,19,20,21,22,23

W; -
Memory 9 1 ‘2 3 Collisions
/ —— i D

T

0,11,22,5,4,15| 2,9,8,19,6,13 [12,23,10,17,16,3 14,21,20,7,18,1

Fig. 2 Example 2

In fact, when gcd(W,C) #1 i.e. the window size of the parallel decoding is not prime
to the parallel degree, the memory mapping (y(/fM - is not contention-free. This can be

proved as follows.

Let gcdW,C)=a>1. Then C=aC’ and C'<C . This implies CW modC =0 .
Therefore CHtqp (1) = CHyyop (1 + C'W) , where 1,i+C'W € E;andi#i+C'W , which
shows the mapping is not contention free as claimed in [3] and [4].

ARP given in the examples of [3] with L=5472= 12*456 (C=12, W=456) and
L=408=4*102 (C=4, W=102) and ARP given in the examples of [4] with
L=320=4*80 (C=4, W=80) and L=640=4*160 (C=4, W=160) all have gcd(W,C) #1.
Therefore, the memory mapping @{/[M - is not contention-free for those ARP.

Consider the memory mapping ~f (EQ-2) given in [2]. One can prove that the
i 1s contention free for ARP only in the case gcd(W,C)=W or C.

DI
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Example 3 (continue of Example 2)

The ARP of size L=24 and C=4 and W =6 is defined by
(n(0), n(1), m(2), ...m(22), m(23)) =
(0,11,22,5,4,15, 2,9,8,19,6,13, 12,23,10,17,16,3, 14,21,20,7,18,1)
We have gcd(W,C)=2 (#W,C). In fact,

R Clipyy A Y
E, =1{0,2,12,14} — {0,2}, E, ={11,9,23,21} — {13}

g oy

E, =1{22,810,20} — {13} E, ={15133,1} — {0,2}
Thus, @(/fD y does not map the index set of i-th parallel decoding cycle to distinct
memory banks. Thus C_\/(/{D y is not contention-free for this ARP.
m
Example 4 ([3]) L=408=4*102 (C=4, W=102) with gcd(W,C)=2 (#W,C). Using the

interleave m given in [3], the index set at 0-th parallel decoding cycle becomes
E, = {7(0),7(W), z(QW), z(3W)} = {0,74,204,278}

Since V(O)J:O’V(\N)J:O’V(ZW)J:2’V(3W)J: 2, I, will map 4 clements E, to
W W W W

two memory banks. This causes a collision. Therefore, the mapping is not contention-
free for this ARP.
m

5 A more generalized definition of ARP
In the following, we generalize the ARP definition by combining [3] and [4].

Let L be the interleave size and C be a divider of L. Let P be an integer prime to L.
We can write L=CW . Now denote w=W modC . Let A(X) and B(X) be integer

functions defined on the set {0,---,C —1} such that
(A(X)P + B(x))modC = (A(y)P + B(y))modC if x=ymodw (EQ-7)
Furthermore, let 8 € {0,...,C —1}. An ARP s of size L is defined by

7(j)=Pj+A(jmodC)P +B(jmodC)+8 modL,je{0,...,L-1} (EQ-8)

Moreover, to insure 7 is a permutation, the condition 7( j) # z(j') when j# |" must
be satisfied. In fact, as pointed out in [3], by taking A(V) =Ca(V),B(v) =CA(v) (as
defined in [3]), one can show that 7 is indeed a permutation.
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6 Contention-free mapping for ARP of arbitrary size

Let 7 be an ARP interleave of size L=CW defined in (EQ-8) with
gcd(P,L) =ged(P,C) =1. To parallel decode a turbo code with this interleave and
parallel degree C, the index sets at i-th decoding cycle should be

={jW +i| j=0,...,C-1},E, = {z(jW +i)| j=0,...,C -1} (EQ-9)

where W is the size of a window segment that one of the C decoding processor will
work on. Let q be the smallest positive integer such that W =0modC.

W-1 1
Definition 1 The memory mapping Ch; from {0,1,...,L—1}= UE,: E, to
j=0 i

=

Il
(=]

{0,1,...,C —1} is defined by
i, :XH(X{XJ)MC (EQ-10)
qw

Remark In general (EQ-10) can be replaced by

g X > (X+77{ J)rnod C (EQ-11)
qw

Where {770,---,77Cf_l}:{0,1,...,Cf -1}, where C =qC;

Theorem 1 Clrg is a contention-free mapping for ARP with any interleave size, i.e.
forevery j,j' €{0,---,L—1}, j= j'

J,J e B =i (j) #Clp(§) and |, ' e B = i () = Sl (1)
Proof (Upon request).

O

Example 5 (Continuation of Example 3) L=24,C=4. Then W =6. We have
g=2.Thus qW =12. Then

mod 4 |~y J X+\~%2J

E, = {0,6,12,18) —> {0,2,0,2} E, = {0,6,12,18} — {0,0,L1} E, = {0,6,12,18) — {0,2,1,3}
mod 4 L%zj X'*'L%zj

E, = {1,7,13,19) — {13,1,3} E, = {,7,13,19} > {0,0,L1} E, ={1,7,13,19} > {1,3,2,0}
mod4 L%zj X+L%2J

E, = {2,8,1420} —> {2,0,2,0} E, = {2,8,14,20} - {0,0,L1} E, = {2,8,14,20} —> {2,03,1}
mod 4 LV J X*L%zj

E, = 3.9,1521) — B30} E, = 39,1521} 5 {0,011} E, = (3.9,1521} —> {3,,0,2)
mod4 %, x5, ]

E, = {(4,10,1622} — {0,2,0,2} E, = {4,10,16,22} > {0,0,L1} E, = {4,10,16,22} —> {0,2,1,3}

mod 4 LV J X+I—%2J

E. ={511,17,23} - {1,3,1,3} E, = {5,11,17,23} - {1,3,2,0} E, ={5,1117,23} — {1,3,2,0}
That means for i =0,...,W —1, i (E;) =1{0,1,2,3}.
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On the other hand,

n mod 4 R L%zj A X+|—%2J

E, =1{0,2,12,14} - {0,2,0.2} E =0,2,12,14} —>{0,0,1,1} E, ={0.212,14} — {0,2,1.3}

n mod4 ~ L%ZJ A X+\-%2J

E = {11,92321) — (3,13,1} B, = {11,9,23,21} > {0,0,L1} E = 1192321} —> {3,1,0,2}

R mod4 n L%QJ n X*’b{zj

E, = (2281020} —> {2,0,2,0} E, = {22,8,10,20} = {L0,0,1} E, = (2281020} —> {3,02,1}

n mod 4 R L%zj n X+|.%2J

E, ={51917,7} - (13,13} E, ={51917,7} > {0,LL0} E, ={519,17,7} — {10,2,3}

n mod 4 n L%QJ n X+L%2J

E, ={4,6,16,18} — {0,2,0,2} E, ={4,6,16,18} — {0,0,1,1} E, ={4.,6,16,18}, — {0,2,1,3}
L%zj X*L%zj

n mod 4 A N
E, ={15133,1} > (31,3,1} E, ={15,13,3,1} — {11,0,0} E, = {15,133,1} — {0,2,3,1}

That means for i =0,...,W —1, cir,(E,)={0,1,2,3} .

Thus cir; is contention-free mapping for this ARP.
U

Example 7 (Mapping in [3]) L=5472, C=12, P=97. Then the window size W=456 and
W modC =0. Thus q=1. Then
E, ={456r +i|r=0,...,11},i=0,-,79

with E; modC = {i}. Moreover, L(rW + %VJ =r,r=0,...,11. Then,
S (E)={@{+ j)mol2| j=0,....11} ={0,...C -1} .

On the other hand, we have z(rW +i)=[(rW +i)P + A(imodC)P + B(imod C)]mod L
with A(imodC)P + B(imodC) defined in the following table, where we denote

k=imodC.

k‘ A(imodC)P +B(imodC)

0,8 0

1 24

2,6 4P+16=404

3,11 4P+24+12P+12=1588

4 12P+12=1176
50 | 24+12P+12=1200
7 4P124=412

10 4P+16+12P+12=1580

Thus 7(rW +i)modC =[iP + A(i)P + B(i)Jmod C. Therefore,
E modC = {z(rW +i)|r=0,...,C —1} = {[iP + A®i)P + B(i)Jmod C}-
2(r'W +1) =[rWP +iP + A(i)P + B(i)]mod CW =[rW +iP + A(i)P + B(i)Jmod CW

Let (i) =(C —kK)W + (i) with 0 <y <W , we have
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7(JW +1)=(C -k + )W + (i), j=0,....,k—1 and
7(JW +1)=(j—kKW + (i), j=k,...,C -1

Thus {V(VW + %Jmodc Ir=0,...C—1}={0,1,...,C —1}. Therefore,

ol (E) = {(V(rw +%J+iP+A(i)+ B(i))modC |r =0,...,C~1} = {0,1,...,C 1.

Thus Cif} is a contention-free mapping for this ARP.

0

With the same ARP of period C, one can carry on parallel decoding of degree mC
when mC|L. In this case Definition 1 and Theorem 1 can be extended. To do this, we
need modify the index set at i-th decoding cycle and other numbers.

Let 7 be an ARP interleave of size L=CW defined in (EQ-8) with
gced(P,L) =gcd(P,C)=1. Let m be a positive integer such that mC|L. We define

W, = %nC and define the corresponded index set at the i-th decoding cycle by

E.(m)={jW_+i| j=0,...,mC -1}, E,(m)={z(jW, +i)| j=0,...,mC -1} (EQ-12)

Let gm be the smallest positive integer such that q,W, =0modmC .

Definition 2 The memory mapping i1, from
w,, -1 Wyl
{01,....,L-1} = [ JE(m) =] E;(m) to {0,L,...,mC -1}
j=0 j=0

is defined by

\);v J)mod C (EQ-13)

m m

@VEB:XI—)(X+|‘

Remark In general (EQ-13) can be replaced by

@VEB:XH(XWLU{ ) J)modC (EQ-14)

Wi
where {n,,---,nc. 1} =1{0,L,...,C; ;, =1}, where mC =q,C; ,

Theorem 2 Ci, is a contention-free mapping, i.e. for every
j,j'E{O,"',L—l},j?ﬁj’

j, i € E(m), = i (j) # g (J) and , | € E;(M) = g (J) # Clig (§)
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Proof Similar to the proof of Theorem 1.

Example 8 (Continuation of Example 7) L =24,C =4 . Consider parallel decoding
of degree 8, we have m=2 and mC=8. Then W, =3, q, =8 and q,W, =24. Thus

L% 4J: 0 for 0<x<L-1 . Therefore the extended mapping becomes

ChMiee 1 X > xmod8. We have

mod 8
E,(2) ={0,3,6,9,12,15,18,21} — {0,3,6,1,4,7,2,5}
mod 8

E (2)={14,7,10,13,16,19,22} — {1,4,7,2,5,0,3,6}
mod 8
E,(2) = {2,5,8,11,14,17,20,23} — {2,5,0,3,6,1,4,7}

mod 8

E,(2) ={0,5,2,19,12,17,14,7} — {0,5,2,3,4,1,6,7}
A mod 8
E (2)=1{11,4,9,6,23,16,21,18} — {3,4,1,6,7,0,5,2}

mod 8

E,(2) = {22,15,8,13,10,3,20,1} — {6,7,0,5,2,3,4,1}
That is to say for i =0,1,2, ¥, (E,(2)) = {0,1,2,3,4,5,6,7} and

i, (B (2)) = {0,1,2,3,4,5,6,7} . Thus Clr, is a contention-free mapping for this ARP.

7 Conclusion

It is shown in this document that for many block size the memory mappings given in
[3-4] and [2] is not contention-free for the interleave defined by ARP. We then
proposed a general contention-free mapping for ARP of arbitrary block size. This
mapping is algebraic and can be used in the 3GPP LTE turbo coding.
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