3GPP TSG RAN WG1#47
R1-063097
Riga, Latvia, 6-10 November 2006
Agenda Item:
6.7
Source:
France Telecom, Orange
Title:
A new highly parallelizable interleaver for LTE turbo-codes
Document for:
Discussion
1 Introduction

In 3GPP TSG RAN1 WG1 Meeting #46, it has been decided to use Rel6 Turbo-Codes (mother code R=1/3 [3]) for L3 data packet transmission. However, to reach targeted throughput, a contention-free interleaver allowing parallelisation has to be designed.
In this contribution, we propose a contention free interleaver:

· with a high parallelisation level;

· with a single identical address used to address multiple memory banks, replacing classical multiple addresses schemes when parallelisation is used;
· without performance degradation compared to Rel6 turbo-code, while maintaining a satisfactory level of flexibility.

2 Definition of the interleaver
2.1 Structure of the interleaver

Rel.6 turbo-code can be represented as depicted in Figure 1 below:

[image: image1.emf]Convolutional

Code

Cod1

Convolutional

Code

Cod2

Systematic bits

Interleaver

S

P

1

P

2

Parity bits

Puncturing

Figure 1 – Turbo-code structure
The interleaver proposed in this contribution can be partially depicted using a matrix form. This matrix is built thanks to m circularly shifted identity matrices (size: zxz).

ex. 1: the following matrix I(is circularly shifted of 3 positions ("right" shift).

[image: image2.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

0

1

0

0

0

0

1

0

0

0

0

1

1

0

0

0

d

I

.

The size of the interleaver is K = mxz. The parameters of the interleaver are:

· the coefficients
[image: image3.wmf]i

d

, with
[image: image4.wmf][

]

1

,

0

-

Î

z

i

, that indicate the shifts of each shifted identity matrix, and,

· the positions
[image: image5.wmf]i

P

, with
[image: image6.wmf][

]

1

,

0

-

Î

m

i

, that indicate the position of each shifted identity matrix in the row of the interleaving matrix.

ex. 2: let's consider an interleaver of size K=32 (m=4, z=8), defined by the coefficients
[image: image7.wmf][

]

3

,

7

,

4

,

0

=

d

 and the positions
[image: image8.wmf][

]

0

,

3

,

1

,

2

=

P

. The inner interleaving matrix
[image: image9.wmf]'

I

 can be written as follows:

[image: image10.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

0

0

0

0

0

0

0

0

0

0

0

0

'

3

2

1

0

d

d

d

d

I

I

I

I

I

,
Expanding the individual shifted identity matrices, the inner interleaving matrix takes the following form:

[image: image11.png]
Figure 2 – Inner interleaving matrix
[image: image12.wmf]'

I

The complete interleaving process is done in three steps:
· first step (regular row-column interleaving with a matrix of size zxm)
· Each row i (
[image: image13.wmf][

]

1

,

0

-

Î

m

i

) of each (zxz) sub-matrix is read.

· In ex. 2, rows are read in the following order: 0, 8, 16, 24, 1, 9, 17, 25, 2, 10,18, 25 …

· The i-th value to be read is in position
[image: image14.wmf]ú

û

ú

ê

ë

ê

+

=

m

i

z

m

i

j

)

%

(

. ("%": modulo function – "
[image: image15.wmf]ë

û

": floor function).
· This first step can be summarized by the following equation:
[image: image16.wmf]ú

û

ú

ê

ë

ê

+

=

m

i

z

m

i

j

)

%

(

.
· second step (application of the inner interleaving matrix)
· The second step consists in the projection of the rows of the matrix on its columns via the shifted identity matrix, as described on the following picture; it results in a circular permutation of blocks of z elements interleaved according to a law defined by P.

· This second step can be summarized by the following equation:
[image: image17.wmf]z

z

j

P

z

j

z

j

k

ú

û

ù

ê

ë

é

ú

û

ú

ê

ë

ê

+

÷

÷

ø

ö

ç

ç

è

æ

+

ú

û

ù

ê

ë

é

ú

û

ú

ê

ë

ê

=

%

d

.
[image: image18.png]
Figure 3 – Interleaving process, step 2
· third step (regular row-column interleaving with a matrix of size mxz)
· This last step is a dual process as the one described in the first step: each column k (
[image: image19.wmf][

]

1

,

0

-

Î

m

k

) of each (zxz) sub-matrix is written at the output of the interleaving process.

· The k-th value to be written is in position
[image: image20.wmf]ú

û

ú

ê

ë

ê

+

=

z

k

m

z

k

l

)

%

(

.
· As described in the figure below, the data are output as follows:

· 23, 17, 0, 6, 27, 21, …

· The interleaving process is then the following one:

"Raw" data: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, …
(
Interleaved data: 23, 17, 0, 6, 27, 21, 4, 10, 30, 25, 8, 14, 3, 29, 12, 18,….
· And can be defined as:
[image: image21.wmf][

]

[

]

z

m

i

m

i

m

m

i

P

l

%

%

%

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ú

ê

ë

ê

+

+

=

d

[image: image22.png]
Figure 4 – Result of the interleaving process
The set of values
[image: image23.wmf]d

 and
[image: image24.wmf]P

 required to define the inner interleaving matrix
[image: image25.wmf]'

I

can be computed using an algebraic law; there is no absolute need to store multiple matrices in memory.
It can be shown that the minimum spatial distance Smin between two bits i and j can be expressed as follows:

[image: image26.wmf](

)

(

)

j

i

S

S

j

i

,

min

,

min

=

 with
[image: image27.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

j

i

K

j

i

j

i

K

j

i

j

i

S

P

-

P

-

P

-

P

+

-

-

-

=

,

min

,

min

,

.

[image: image28.wmf](

)

(

)

(

)

(

)

(

)

(

)

z

m

j

z

m

i

m

P

P

m

S

j

i

j

i

%

%

,

2

min

min

+

-

+

+

-

=

d

d

.

When adding some constraints on the parameters, we can get
[image: image29.wmf]z

mK

m

S

2

2

min

=

=

.

Summary

Let's apply the three steps defined above on a very simple example to sum up the interleaving process. The proposed parameters for the example are: m = 2, z = 4, P = [1;0] and δ=[2;3].

The inner interleaving matrix has the following expression

[image: image30.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

P

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

'

The original sequence is:

[image: image31.emf]0 1 2 3 4 5 6 7

Blocks of m data are built:

[image: image32.emf][0 1] [2 3] [4 5] [6 7]

Each first data of each block of size m

is written in the first block of size z, and then each second data of each

block of size m is written in the second block of size z,
and so on…

building new blocks of z data

[image: image33.emf]0 2 4 6 1 3 5 7

Shifts defined by δ are applied on each block:
δ=2
δ=3

[image: image34.emf]4 6 0 2 3 5 7 1

Then blocks are permuted according to the
 rule defined by P (= [1;0]):

[image: image35.emf]3 5 7 1 4 6 0 2

The interleaved data are built taking the

first data of the first block and the first data of the second block, then the second

data of the first block and the second data of the second block … Blocks of m data

are built.

[image: image36.emf]3 4 5 6 7 0 1 2

The interleaved sequence corresponding to the input sequence [0 1 2 3 4 5 6 7] is then [3 4 5 6 7 0 1 2]. Let's have a quick look at the matrix representation:

[image: image37.png] [image: image38.png]
2.2 Parallelism
Interleaver leading to Contention

Let's assume that the result of the interleaving process of the sequence [0,1,2,3,4,5,6] is, for instance, [1,4,2,6,5,3,7,0]. We consider here a parallelism of p = 2. The decoder of the first convolutional code decodes in parallel:

 time

0 1 2 3

4 5 6 7

The interleaved data (= result of Cod1 decoding) are written in two memory banks according to the interleaving rule:
[image: image39.png]
Figure 5 – Memory contention
In this case, a memory contention occurs as we write two data at the same time in a memory bank.
Avoiding contention with the proposed interleaver

As can be guessed when observing the specific structure of the interleaver proposed in 2.1, one of the benefits of this scheme is the possibility to parallelise the decoding process.

When parallelisation is used at the decoder, extrinsic values and channel observations must be read at the same time in the same memory (if we suppose that only one memory is available). One way to avoid simultaneous memory access consists in dividing the memory in multiple banks. If we suppose that the decoder is able to decode p sections of the trellis in parallel, the interleaving process must not access more than one value of a given memory bank among the p decoded values.
With this specific structure, a first condition to get a parallelism of p sets that z must be a multiple of p:
[image: image40.wmf]0

%

=

p

z

.
In the interleaver presented in 2.1, let's introduce a parallelism of 2 (this level of parallelism can be increased up to z=8).
To address this parallelism, two memories can be divided in two banks each as depicted below:

· A first memory (write/ read) is divided in two banks (blue and green).
· A second memory (read/write) is divided in two banks (red and yellow).
[image: image41.png]

Figure 6 – Memories definition

The two trellis are divided in parts of equal size and the data
[image: image42.wmf]i

 and
[image: image43.wmf]2

K

i

+

 (
[image: image44.wmf]K

= size of the interleaver) are decoded in parallel. More generally, a parallelism of p implies that data with the index
[image: image45.wmf]2

K

k

i

´

+

 with
[image: image46.wmf][

]

1

,

0

-

Î

p

k

, are decoded in parallel.

Thanks to the specific properties of the interleaver and the division proposed in this paper for the structure of the memories:
· the data to be decoded are read in two different banks (0 and 16 then 1 and 17 …. etc), and,

· the output of the decoding process after interleaving (2nd convolutional coder of the turbo-code) belongs to two different memory banks.

[image: image47.png]
Figure 7 – Contention free interleaver
The proposed method solves the contention issue of Rel.6 turbo-codes as a given memory bank will not be accessed for 2 simultaneous "write" or "read" operations. In a more general way, each (zxz) matrix is divided in p "sub-matrices", with each sub-matrix "connected" to a given memory bank.

Such an interleaver, with a p parallelization level, is then able to process pxm sections of the trellis without contention as depicted in the figure below.
[image: image48.png]
Figure 8 – Turbo decoding of pxm sections in parallel
Moreover, as far as implementation is concerned, a very interesting property of the scheme is the very low number of addresses to be computed: when the output of the decoder is written, the position of the data in a memory "sub-bank" is the same for all the "sub-banks"; one address has to be computed when p addresses are usually computed. For instance, in the figure above, the output of the decoding process of values "0" and "16" will be stored in position 3 of the corresponding memory banks.
The degree of parallelization is a very flexible parameter; p can be set as wished (in our example p can be equal to 2, 4 or even 8).
Let's go back to the example proposed in the summary of section 2.1.
The input sequence is [0,1,2,3,4,5,6,7]. The interleaved sequence is [3,4,5,6,7,0,1,2].

We consider here a parallelism of p = 2. The decoder of the first convolutional code decodes in parallel:
 time
0 1 2 3

4 5 6 7

The interleaved data (= result of Cod1 decoding) are written in two memory banks according to the interleaving rule:

[image: image49.png]
Figure 9 – No memory contention

As can been seen on Figure 9, the proposed interleaver solves the problem of memory contention and generation of addresses is simplified as only one address has to be computed.
2.3 Puncturing
To address multiple coding rates when using a turbo-code with mother code R=1/3, the use of puncturing patterns is required.
Puncturing consists in removing parity bits from the initial coded sequence. The proposed inner interleaver of the turbo-code can be designed in order to provide, when possible, the same number of parity bits per systematic bits (for instance, if a rate R=1/2 is required, it wouldn't be optimal to output 2 parity bits for the first systematic bit, and to puncture the two parity bits for the second systematic bit).

The proposed interleaving process can be designed to provide a "homogeneous distribution" of the parity bits corresponding to given systematic bits.
3 Application to LTE turbo-codes and performance
This new type of interleaver has been applied in the context of Rel.6 turbo-codes and simulations have been done to check the performance compared to UMTS TC.

The block lengths chosen in this contribution are for simulation purpose only and not propositions for new LTE block lengths.
The initial simulation results show that the proposed interleaver basically achieves the same performance as Rel6 and shows no early error floor for the different block sizes and code rates considered. More simulation results covering the whole range of block sizes for LTE will be provided in future contributions.
Simulation assumptions

	Coding scheme
	UMTS Rel.6 TC mother code R=1/3

	Propagation channel
	AWGN

	Modulation
	QPSK

	Iterations
	8

	Decoding algorithm
	Max-Log-MAP

	Rates
	1/3 – information size = 864

· m=18 & z = 48

1/2 – information size = 864

· m=18 & z = 48

2/3 – information size = 1536

· m=24 & z = 64

Simulations results

[image: image50.emf]0.00.51.01.5

-5

10

-4

10

-3

10

-2

10

-1

10

0

10

BLER/BER vs EbN0 - Rate = 1/3 - Info size = 864

EbN0 (dB)

BLER/BER

BLER UMTS

BLER QC

BER UMTS

BER QC

[image: image51.emf]0.00.20.40.60.81.01.21.41.61.82.0

-5

10

-4

10

-3

10

-2

10

-1

10

0

10

BLER/BER vs EbN0 - Rate = 1/2 - Info size = 864

EbN0 (dB)

BLER/BER

BLER UMTS

BLER QC

BER UMTS

BER QC

[image: image52.emf]0.00.51.01.52.02.5

-5

10

-4

10

-3

10

-2

10

-1

10

0

10

BLER/BER vs EbN0 - Rate = 2/3 - Info size = 1536

EbN0 (dB)

BLER/BER

BLER UMTS

BLER QC

BER UMTS

BER QC

4 Conclusion

In this contribution, we have proposed a new interleaver for 3GPP LTE binary turbo-codes. As required by RAN1, this interleaver is contention free and offers a high level of parallelism. Performances of such an interleaver are close to Rel.6 turbo-code performance and puncturing can be taken into account in the design of the interleaver to share available protection between information bits.
References
[1] C. Berrou, A. Glavieux, P. Thitimajshima, "Near Shannon limit error-correcting coding and decoding:Turbo-Codes", Proc. of IEEE ICC'93, Geneva, pp. 1064-1070, Volume 2, May 1993.
[2] O. Y. Takeshita, "On Maximum Contention-Free Interleavers and Permutation Polynomials over Integer Rings", IEEE Transactions on Information Theory 2004, Volume 52, Issue 3, March 2006, pp. 1249-1253.
[3] 3GPP TS 25.212 v6.4.0 (2005-03): “Multiplexing and Channel Coding (FDD) (Release6)”.

PAGE
1

_1222523961.doc
[image: image3.wmf]P

[image: image1]
[image: image2]

P1

S

Interleaver

� EMBED Equation.3 ���

Systematic bits

Convolutional Code

Cod2

Convolutional Code

Cod1

P2

Parity bits

Puncturing

Puncturing

Parity bits

P2

P1

S

Interleaver

� EMBED Equation.3 ���

Systematic bits

Convolutional Code

Cod2

Convolutional Code

Cod1

[image: image4.wmf]P

_1222154856.unknown

_1222581442.doc
4 6 0 2 3 5 7 1

_1222760982.unknown

_1222761905.unknown

_1222866130.unknown

_1223129538.unknown

_1223129802.unknown

_1222869149.unknown

_1222762346.unknown

_1222866116.unknown

_1222866047.unknown

_1222762122.doc
3 4 5 6 7 0 1 2

_1222761162.unknown

_1222761855.unknown

_1222761150.unknown

_1222760968.unknown

_1222581984.doc
3 5 7 1 4 6 0 2

_1222529048.doc
[0 1] [2 3] [4 5] [6 7]

_1222529891.doc
0 2 4 6 1 3 5 7

_1222528961.doc
0 1 2 3 4 5 6 7

_1221996447.unknown

_1222007042.unknown

_1222088462.unknown

_1222151130.unknown

_1222084969.unknown

_1222068777.unknown

_1222002286.unknown

_1222007036.unknown

_1222002271.unknown

_1221996247.unknown

_1221996280.unknown

_1221377197.unknown

_1221404135.unknown

_1221393767.unknown

_1221373481.unknown

