3GPP TSG RAN WG1 #47
 R1- 063092
Riga, Latvia, 06 – 10 November, 2006
Source:
Mitsubishi Electric Corporation,
Title:
A Contention-free interleaver for turbo codes
Agenda Item:
6.7
Document for:
Discussion/Decision
1. Introduction

This contribution presents a novel internal interleaver of turbo codes which can support high parallel operation to achieve 100Mb/s as maximum throughput. It is well known that parallel turbo decoding has a memory-bank‑access problem. One way to avoid the problem is to use an internal interleaver structured such that no two processors need to access the same memory bank at the same timing in parallel operation. We propose an “LRI” interleaver, where LRI stands for “Latin square and Rectangle structured Interleaver”[1]. This interleaver solves the aforementioned problem, and has a very simple generation rule. The LRI interleaver requires fewer operations and parameters to implement than the Rel-6 internal interleaver [refer to table 1], and it can be implemented “on the fly.” The LRI interleaver has the following characteristics,
· Use the same table as PIL to make Only One pseudo-random sequence C(i).
· Simple structure based on cyclic shifts of C(i).
· Equivalent performance to turbo codes with PIL.
 We describe the generating rule and why it solves the memory contention problem. We also show the BLER performance of various interleaver size. We note that the LRI interleaver has high parallelisation and maintains good BLER performance. We believe that the LRI interleaver satisfies the requirements of 3GPP LTE system such that, over 100Mbps throughput, coding gain is preserved. Furthermore, turbo codes with our interleaver can decode within the required time duration in the 2x2 MIMO case.
Table 1 complexity comparison
	
	LRI (proposed)
	PIL (Rel’6)

	Table to Construct the basic sequence C(i)
	Same as the PIL table
(Same as PIL)
	Table look up

 (primes & primitive roots)

	Inter row
permutation
	Read sequentially from last row
(Simpler than PIL)
	Table look up

(Order of permutation)

	Intra row
permutation
	Only Cyclic shift of C(i)
(Simpler than PIL)
	Calculate from C(i) per each rows

2. Definition of CF Interleaver
We use the following definition of a Contention-Free (CF) interleaver. An interleaver is a permutation, π(•), of K elements (information bits). It is considered to be contention-free for Np processors if it is possible to partition the K elements into Np equal groups (thus, K must be a multiple of Np) such that no “collisions” occur. Here, the groups represent different memory banks where bit parameters are stored, and a “collision” occurs when two (or more) parallel processors attempt to access the same memory bank at the same time.
For a more formal definition, we observe that a partition is represented by a mapping, g(•) that assigns each of the K elements to a group; thus, g(•) maps the set {0, … , K–1} into the set {0, … , Np–1}. For the first turbo code the parallel processors need to access bit parameters in numerical (not-permuted) sequence. Specifically, parallel decoding with Np processors requires K/Np steps and, at step m, the i‑th parallel processor accesses bit number iK/Np + m; where m ({0, … , K/Np–1} and i ({0, … , Np–1}. Thus, to avoid collisions, we need to satisfy the condition
 g(iK/Np + m) ≠ g(jK/Np + m) (i,j ({0, … , Np–1}; m ({0, … , K/Np–1}
For the second turbo code, the processors need to access the permuted bit sequence, so that, to avoid collisions between permuted bit parameters, we need to satisfy the condition

 g(π(iK/Np + m)) ≠ g(π(jK/Np + m)) (i,j ({0, … , Np–1}; m ({0, … , K/Np–1}

If these two conditions are satisfied, all the processors can access bits simultaneously at each decoding cycle without any two processors needing to access the same memory bank (group). Of course, for a CF interleaver to be practical, it is important that both the permutation π(•) and the group mapping g(•) be easy to implement. In this document we propose a CF interleaver that is easy to implement and also achieves BLER performance equivalent to Rel-6 turbo codes.
3. Proposed Turbo Code internal Interleaver
Here we present the generating rule of the proposed internal interleaver: Latin square and Rectangle structured Interleaver(LRI). The LRI interleaver is defined through seven steps. The first step is setting the parameters. The table of primitive roots is the same as for the Rel-6 interleaver. The second step is generating pseudorandom numbers. This operation is same as generating the base sequence in the Rel-6 interleaver. The third step is performing the inter-row permutation. We can easily understand that this operation is only reading C(i) sequentially. The fourth and fifth steps are making the input matrix and the output matrix; and the sixth step is making the permuted output sequence. These steps yield an LRI interleaver for an information block length, K, of the form K = P×n, where P is a prime number and n is an positive integer number. An additional seventh step is needed for the more general case where K < P×n; the seventh step is based on deleting some of the elements of the permutation to yield the desired length for the permuted sequence.
Step 1
* Define the parameters for interleaving

K

: The number of information bits per turbo codeword

NP

: The desired number of parallel processors

P

: Pick a prime number from Table 1.

m = P

: The number of columns for interleaving

n

: The number of rows for interleaving.
Note 1: We set m, n, and P the same way as in Rel-6; i.e., the number of columns, m, is determined first, and then n is computed from m.
Note 2: The goal is to get a matrix where the number of columns is a prime number, m = P, and the number of rows is less thatn the number of columns; i.e., m > n.
Note 3: Table 2 has been reproduced verbatim from the specification for the Rel-6 PIL interleaver.
* Select a primitive root from Table 1, based on the prime number P.

G0

: A primitive root.
Table 2: List of prime numbers P and associated primitive root v
	P
	V
	P
	v
	P
	V
	P
	v
	P
	v

	7
	3
	47
	5
	101
	2
	157
	5
	223
	3

	11
	2
	53
	2
	103
	5
	163
	2
	227
	2

	13
	2
	59
	2
	107
	2
	167
	5
	229
	6

	17
	3
	61
	2
	109
	6
	173
	2
	233
	3

	19
	2
	67
	2
	113
	3
	179
	2
	239
	7

	23
	5
	71
	7
	127
	3
	181
	2
	241
	7

	29
	2
	73
	5
	131
	2
	191
	19
	251
	6

	31
	3
	79
	3
	137
	3
	193
	5
	257
	3

	37
	2
	83
	2
	139
	2
	197
	2
	
	

	41
	6
	89
	3
	149
	2
	199
	3
	
	

	43
	3
	97
	5
	151
	6
	211
	2
	
	

Step 2

* Generate a sequence of P-1 pseudorandom numbers.

C(0) = 1,

For i = 1,...,P-2 { C(i+1) = G0 (C(i) mod P }

Step 3

* Construct an n×m matrix where each row is a cyclic shift of the C(•) sequence, with a column of all zeros added at the right. Specifically, if CLj(i) is the generic ,matrix element, we have:

For j = 0,1,...,n-1 {

For i = 0,1,...,m-2 {CLj(i) = C(j+i mod m-1) }

CLj(m-1) = 0
}
Step 4

* Construct the n×m input matrix, Uj(i), as a sequence of consecutive numbers increasing left to right and then down. Specifically, if Uj(i) is the generic matrix element, we have:

 For j = 0,1,...,n-1 {

For i = 0,1,...,m-1 { Uj(i) = i + m(j }

}

Step 5

* Construct the n×m output matrix U’j (i) from the CLj(i) matrix by adding P×j to each row, and then reversing the order of the rows. Specifically, if U’j (i) is the generic matrix element, we have :

For j = 0,1,...,n-1 {

For i = 0,1,...,m-1 { U’j(i) = U(n-j)(CL(n-j)(i)) }

}

Step 6

* Construct the permuted output sequence u’(k) by reading the output matrix elements starting from top left and going down each column in sequence. Specifically, if u’(k) is the generic output sequence element, we have :

For j = 0,1,...,n-1 {

For i = 0,1,...,m-1 { u’(j+n(i) = U’j(i) }

 }

Step 7

* Trimming the sequence: If K = m×n, then no trimming is needed; the interleaver generated in Step 6 is the desired CF interleaver. Otherwise, if K < m×n, the matrix contains more elements than the number of information bits to be transmitted. In this case, the sequence is shortened by deleting the values that exceed K – 1; specifically, values such that u’(j) ≥ K are deleted from the sequence to obtain the desired sequence of length K. Note that, when a processor encounters one of the deleted values in the sequence specified by Step 6, it should stay idle for one clock cycle, so as not to go out of synchronization with the other processors. This is necessary to preserve the CF feature of the interleaver. An example is shown in the Appendix.
[image: image1.png]
Figure 1. Block diagram of rate-⅓ turbo encoder.
4. Implementation of parallel processing
 A Latin square is well-known as an n×n table filled with n different symbols in such a way that each symbol occurs exactly once in each row and exactly once in each column. An similar pattern is seen in the Appendix, Step3 CLj(i) matrix; except that the 19th column is filled by 0. If we don’t include the last column, we see that each row and column doesn’t have the same number more than once in this 12×18 matrix.

For parallel processing, it is assumed that Each row of the Uj(i) matrix is entirely stored in a single memory bank and, since the rows of the U’j (i) matrix are simply permutations of the rows of the Uj(i) matrix, they are also each entirely stored in a single memory bank. If each parallel processor beigins processing in a different memory bank, the feature of the Latin Square insures that there will continue to be no collisions even as the processors go through the interleaved sequence. How this happens is illustrated in detail by the example in the Appendix.

5. Comparison with Rel-6 interleaver
Performance
 We show the BLER performance of the proposed interleaver and Rel-6 interleaver. The recursive convolutional code of Rel-6 and tail-bitting(terminated trellis) encoding is used. The coding rate is 1/3, information lengths K are 320, 640, 1000, 2000, 3000, 4000, 5000. The Max-Log-Map algorithm with 8 iterations has been used. For K = 2000, 3000, 4000, 5000 we have slightly modified the generation rule aforementioned. We will present about the modified version near future. This results show that the BLER performance of the LRI interleaver is as good as Rel-6 interleaver.
[image: image2.emf]1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.40.60.811.21.41.61.822.2

Eb/N0

Block Error Rate

LRI 320

PIL 320

LRI 640

PIL 640

LRI 1000

PIL 1000

LRI 2000

PIL 2000

LRI 3000

PIL 3000

LRI 4000

PIL 4000

PIL 5000

LRI 5000

Fig.1 BLER performance of proposed LRI interleaver and Rel-6 interleaver : 320, 640,1000, 2000, 3000, 4000, 5000 information bits
Complexity

 The Rel-6 interleaver is mainly composed of the following operations, 1) select a prime root, 2) construct the base sequence for intra-row permutation, 3) inter-row permutation, 4) intra-row permutation, and 5) pruning. The differences between the two interleavers are operations 3) and 4); in particular, the LRI interleaver doesn’t use any table to perform intra- and inter- row permutation. For a fair comparison, we show the case where the number of rows, n, of the LRI interleaver is fixed and P is selected to be the smallest prime number such that
[image: image3.wmf])

1

(

+

´

£

P

m

K

.
Table.3 complexity comparison
	
	
	LRI (proposed)
	PIL (Rel’6)

	1)
	set the parameters
	
[image: image4.wmf])

1

(

+

´

£

P

m

K

	
[image: image5.wmf])

1

(

+

´

£

P

m

K

	2)
	Construct basic sequence
	C(i+1) = G0 (C(i)
[Multiple : P-2] for C(i+1)
	C(i+1) = G0 (C(i)
[Multiple : P-2] for C(i+1)

	3)
	Inter row
permutation
	Read sequentially from

last row
	Defined as table

	4)
	Intra row
permutation
	CLj(i) = C(j+i mod m-1),
Read sequentially from j
	CLj(i) = C(j(x mod m-1),

x is defined as table.

[Multiple : (m-1) (n] for CLj(i)

	5)
	trimming
	Delete (m(n– K) bits
	Delete (m(n– K) bits

The LRI interleaver doesn’t need any multiples for intra row permutation, it’s able to perform only read sequentially.
6. Summary
 We presented an interleaver for turbo codes that is suitable for highly‑parallel decoding. Proposed interleaver, LRI, has Latin‑square construction and supports contention‑free memory access. The LRI interleaver does not only support contention free memory access, but also has flexibility for the number of parallel operations. It’s suitable for high‑throughput decoding of Turbo codes, and BLER performance is maintained at about the same level as with the Rel-6 interleaver. Finally, the LRI interleaver uses the same generation rule as the Rel‑6 interleaver, which allows the re-use of technology already developed. We believe the LRI interleaver satisfies the requirements of 3GPP LTE system.

[Reference]
[1] W.Matsumoto, W. Xu, H.Imai, “Interleaver Design for Turbo Codes Using Latin Square/Rectangular Matrix Structure of Random Sequence,” IEICE A Vol. J85-A No.6 pp691-703 June 2002.
Appendix. An example of proposed interleaver

The example of interleaving sequence of LRI is as follows:
Step1

We have an information block size of K = 224. We use m = P = 19 and n = 12.

Step2

From Table 2 we find that the primitive root for P = 19 is G0 = 2. Accordingly, we generate the sequence of 18 pseudorandom numbers:

C(i) = {1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10}
Where C(i + 1) = (C(i) × 2) mod P

Step3
We create the CLj(i) matrix with 12 rows and 19 columns. Each row is a cyclic shift of the pseudorandom sequence, except for the last column which is all zeros.
	1
	2
	4
	8
	16
	13
	7
	14
	9
	18
	17
	15
	11
	3
	6
	12
	5
	10
	0

	2
	4
	8
	16
	13
	7
	14
	9
	18
	17
	15
	11
	3
	6
	12
	5
	10
	1
	0

	4
	8
	16
	13
	7
	14
	9
	18
	17
	15
	11
	3
	6
	12
	5
	10
	1
	2
	0

	8
	16
	13
	7
	14
	9
	18
	17
	15
	11
	3
	6
	12
	5
	10
	1
	2
	4
	0

	16
	13
	7
	14
	9
	18
	17
	15
	11
	3
	6
	12
	5
	10
	1
	2
	4
	8
	0

	13
	7
	14
	9
	18
	17
	15
	11
	3
	6
	12
	5
	10
	1
	2
	4
	8
	16
	0

	7
	14
	9
	18
	17
	15
	11
	3
	6
	12
	5
	10
	1
	2
	4
	8
	16
	13
	0

	14
	9
	18
	17
	15
	11
	3
	6
	12
	5
	10
	1
	2
	4
	8
	16
	13
	7
	0

	9
	18
	17
	15
	11
	3
	6
	12
	5
	10
	1
	2
	4
	8
	16
	13
	7
	14
	0

	18
	17
	15
	11
	3
	6
	12
	5
	10
	1
	2
	4
	8
	16
	13
	7
	14
	9
	0

	17
	15
	11
	3
	6
	12
	5
	10
	1
	2
	4
	8
	16
	13
	7
	14
	9
	18
	0

	15
	11
	3
	6
	12
	5
	10
	1
	2
	4
	8
	16
	13
	7
	14
	9
	18
	17
	0

Step4
We form the input matrix Uj(i). It also has 12 rows and 19 columns. The numbers increase from left to right and from top to bottom. Each row represents bits that are stored in the same bank; in this case, there are 6 processors and, therefore, 6 banks. The labels at left show the memory bank where each row is stored. Since K = 224 is less than m×n = 228, the last 4 bit positions correspond to bits that will be deleted from the final sequence; that’s why they are shown with dark shading.
	Mem. Bank 0
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18

	Mem. Bank 1
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37

	Mem. Bank 2
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56

	Mem. Bank 3
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75

	Mem. Bank 4
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94

	Mem. Bank 5
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113

	Mem. Bank 6
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132

	Mem. Bank 7
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151

	Mem. Bank 8
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170

	Mem. Bank 9
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189

	Mem. Bank 10
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208

	Mem. Bank 11
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227

Step5
We form the output matrix U’j(i) from the CLj(i) matrix of Step3. We reverse the order of the rows of CLj(i), and we add a “base number” to each row. At the left, we show the numbers that were added; they simply decrease by P = 19 from one row to the next. The shaded numbers (to be deleted) are in a different position now. The interleaved sequence starts from the top left value and goes down the first column, then continues down the second column, and so on. As before, the first processor starts at the beginning of the permuted sequence; the second processor starts in the 19th position; and so on. The italicized numbers show the starting points for the six processors; we can see that they occur in different memory banks and, as the processors move through the sequence down the columns, they will continue to be in different memory banks.

	Mem. Bank
	Base n.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	11
	209
	224
	220
	212
	215
	221
	214
	219
	210
	211
	213
	217
	225
	222
	216
	223
	218
	227
	226
	209

	10
	190
	207
	205
	201
	193
	196
	202
	195
	200
	191
	192
	194
	198
	206
	203
	197
	204
	199
	208
	190

	9
	171
	189
	188
	186
	182
	174
	177
	183
	176
	181
	172
	173
	175
	179
	187
	184
	178
	185
	180
	171

	8
	152
	161
	170
	169
	167
	163
	155
	158
	164
	157
	162
	153
	154
	156
	160
	168
	165
	159
	166
	152

	7
	133
	147
	142
	151
	150
	148
	144
	136
	139
	145
	138
	143
	134
	135
	137
	141
	149
	146
	140
	133

	6
	114
	121
	128
	123
	132
	131
	129
	125
	117
	120
	126
	119
	124
	115
	116
	118
	122
	130
	127
	114

	5
	95
	108
	102
	109
	104
	113
	112
	110
	106
	98
	101
	107
	100
	105
	96
	97
	99
	103
	111
	95

	4
	76
	92
	89
	83
	90
	85
	94
	93
	91
	87
	79
	82
	88
	81
	86
	77
	78
	80
	84
	76

	3
	57
	65
	73
	70
	64
	71
	66
	75
	74
	72
	68
	60
	63
	69
	62
	67
	58
	59
	61
	57

	2
	38
	42
	46
	54
	51
	45
	52
	47
	56
	55
	53
	49
	41
	44
	50
	43
	48
	39
	40
	38

	1
	19
	21
	23
	27
	35
	32
	26
	33
	28
	37
	36
	34
	30
	22
	25
	31
	24
	29
	20
	19

	0
	0
	1
	2
	4
	8
	16
	13
	7
	14
	9
	18
	17
	15
	11
	3
	6
	12
	5
	10
	0

Step6 and Step7
Going through the specified sequence, we obtain the permuted output sequence. We show explicitly the spots where the shaded values have been skipped.
 u1’(i) = {207, 189, 161, … , 34, 17, 198, … ,24, 12, 199, … , 29, 5, 208, … , 57, 38, 19, 0}

_1223397615.unknown

_1223133445.unknown

