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1. Introduction

     In this contribution, we proposed the parity-check matrix construction of RC(Rate-Compatible)-LDPC codes to achieve better performance for wide range of code word length and code rate. We informed the parity-check matrix construction method which can support the code rate range from 1/3 to 4/5, the information length range from 180bits to 5000bits, and showed the performance in this contribution in R1-060910. The RC-LDPC codes in R1-060910 are constructed a code-rate 1/2 parity-check matrix for more than code-rate 1/2 and extend the parity check matrix to a code-rate 1/3 matrix for lower than code-rate 1/2. In addition, we prepare the another RC-LDPC codes for low complexity of Hardware. The new proposed RC-LDPC codes are constructed a code-rate 2/3 parity check matrix for lower than code-rate 2/3 and extend the parity check matrix to a code-rate 1/3 matrix for lower than 2/3. Now let the RC-LDPC codes in R1-060910 call type A code, and let the new proposed RC-LDPC codes call type B codes. We can use the type B codes at more than code-rate 1/2 for first transmission of HARQ, and use the type A codes at equal or less than 1/2 for first transmission of HARQ. We show the parity-check matrix of the RC-LDPC codes and the simulation results. As the results of simulations, we could confirm that the RC-LDPC codes can achieve good performance for wide range of code word length and code rate.   
We believe that the RC-LDPC codes are feasible. So, we propose that the possibility of using LDPC codes for LTE system is studied as working assumption. 
2. Performance evaluation for low-rate with RC-LDPC codes 
In this paper, we compare the BLER performance of the following codes.

· Turbo code : Parallel-concatenated Turbo code (R99 Turbo code) 

· LDPC code : Rate Compatible (RC)/Quasi Cyclic (QC) LDPC code [1]

We employ the following decoding algorithms

- Optimum decoding: Log-MAP, layered BP[4]
Table 1 gives the parameters used in the comparisons.
Table 1 – Parameters
	Coding rate 
	1/3, 1/2, 2/3

	Channel model
	AWGN

	Decoding schemes
	(1)Optimal decoding:

-Log-MAP(Turbo,ite:8), Layered BP (LDPC,ite:30)


We show the required average received Eb/N0 at the average BLER=10-2 according to information length for the RC-LDPC codes defined in section 3 and 3GPP turbo codes using optimal decoding in the figure 1. The proposed RC-LDPC codes can achieve good performance and be stable for wide range of code word length and code rate. We can show the RC-LDPC codes are equal to and better BLER performance than the 3GPP Turbo codes. 
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Figure 1. Required average received Eb/N0 at the average BLER of 10-2 according to information length(180-5000bits), RC-LDPC codes type A and type B vs 3GPP turbo codes,, code rate = 1/3, 1/2, 2/3, Optimal decoding,.

3. Basic Scheme of RC-LDPC codes 
3.1 Code structure and code description

 　In this subsection we explain the basic construction of the proposed RC-LDPC codes. Let 
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This product defines a masking operation for which a set of permutation matrices in 
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Our proposed RC-LDPC code 
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is defined as the null space of a parity-check matrix 
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Hence, we can give a parity check matrix 
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 for a LDPC code 
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by designing only a masking matrix 
[image: image46.wmf]Z

. 
As we can see, the information block size K = N-M and N is the code word block size. Through changing 
[image: image47.wmf]p

, a LDPC set of variable information length for various code rates can be obtained.
   The parity check matrix of LDPC codes can be fully described by only small parameters of 
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  The masking matrix 
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’s are designed to be avoided short cycles according to an appropriate degree distribution.

  We show an example of　a masking matrix 
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for equal to and more than code rate 1/3 as follows; 
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Let 
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The information block sizes of LDPC codes 
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The RC-LDPC encoder consists of a common LDPC encoder and a puncturing device. The decoder for RC-LDPC codes is the same as an ordinary LDPC decoding algorithm with received LLR=0 for puncturing bits.

4. Conclusion
The new proposed RC-LDPC codes are constructed a code-rate 2/3 parity check matrix for lower than code-rate 2/3 and extend the parity check matrix to a code-rate 1/3 matrix for lower than 2/3. We can use the type B codes at more than code-rate 1/2 for first transmission of HARQ, and use the type A codes at equal or less than 1/2 for first transmission of HARQ. We show the parity-check matrix of the RC-LDPC codes and the simulation results. As the results of simulations, we could confirm that the RC-LDPC codes can achieve good performance for wide range of code word length and code rate.   

We believe that the RC-LDPC codes are feasible. So, we propose that the possibility of using LDPC codes for LTE system is studied as working assumption. 
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