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I. Introduction

In this contribution, we compare the average cell search time performance of the one-SCH scheme and the two-SCH scheme (FDM) in handover cell search environment. Both the synchronized and non-synchronized networks are considered. This contribution is the extension of the previous contribution Tdoc R1-061830 [2].

II. Simple Simulation Model for Handover Cell Search Performance Comparison
Figure 1 shows a simplified two-cell model, which was devised to verify the performance of cell search schemes for handover cell search through relatively simple simulations [3]. (There are two parameters, 
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Fig. 1 Two-cell model for handover cell search
In the WCDMA system, in order to support seamless soft handover, the UE should be able to find the target cell even when the power from the target cell is less than the home cell (e.g. 
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= -3 dB or -6 dB for two-way or three-way macroscopic path combining in the UE’s rake receiver). However, since the hard handover is supported in 3G-LTE, the handover criterion from the home cell to the target cell is 
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> 0 dB.  Hence, the condition that 
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 = 0 dB corresponds to the worst case, which is assumed throughout the simulations unless stated otherwise.
III. SCH structure
The subframe structures of the one-SCH and two-SCH schemes are shown in Fig. 2. The time-domain multiplexing structure is shown in Fig. 3. For simplicity, we assume the same time-domain multiplexing structure for both schemes, which was designed to support efficient inter-RAT measurement. The details of the structure are described in [1].
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Figure 2. Subframe structures of SCH symbols.
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Figure 3. Frame structure

IV. Handover Cell Search Algorithm 
4-1. Synchronized network
The first step (SCH symbol timing detection) used in initial cell search may not be required for handover search situation in a tightly synchronized network. Figure 4 shows the basic handover search procedure. By using only the second step the UE can find the neighboring cell ID (we assume that the hopping patterns and physical cell IDs are one-to-one mapped). After detecting the target cell ID, the UE can find the exact timing by taking correlation between the received signal and the time domain replica of the cell specific SCH signal corresponding to the identified hopping codeword. In the two-SCH scheme (shown in Figure 2-b), the S-SCH is used for the fine time detection because with P-SCH, there exists a timing ambiguity between the home and target cells in the synchronized network. This contribution only focuses on the physical cell ID detection procedure. 
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Figure 4. Neighbor cell search procedure in the synchronized network.
Figure 5 shows the detailed structure of the physical cell ID detector for the handover search (for one-SCH sheme). The detector is almost the same as the second step detector in the initial cell search scheme [1] except for the following two points. First, since the handover searcher already knows the coarse frame boundary, the number of decision variables is reduced from 
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 (neighbor cell search), where 
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 is the number of SCH symbols in the 10 msec frame. If the information of neighboring cells is available to the UE, the number of hypotheses can be reduced further. Second, the handover searcher employs home cell component nullification as shown in Figure 5. The home cell component nullification block nullifies the GCL correlator outputs at the indices corresponding to the hopping pattern of the home cell. The home cell component nullification significantly improves the cell ID detection performance in the worst case environment as shown in Sec. VI of [2]. 
The second step of the two-SCH scheme utilizes coherent detection based on channel estimation using the P-SCH signal. The coherent detection also employs the home cell component nullification.
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Figure 5. Cell ID detector for handover cell search in the synchronized network
Figure 6 shows the timing relation between the home cell, the target cell and the handover searcher. Since the exact timing from the target cell is unknown to the UE, the searcher reference timing is based on the frame timing of the home cell. In most cases, the candidate target cell is a different sector cell within the same Node B or one of the first tier cells surrounding the home cell. In this case, the timing difference between the received signals from the home cell and the target cell (i.e. 
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 in Fig. 6) may be smaller than the CP length. However, if the target cell is one of the 2nd or 3rd tier cells, 
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can be larger than the CP length even with tight inter-Node B synchronization. The cell search performance may depend on 
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. We have analyzed the effect of 
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on the handover cell search performance in detail in the previous contribution [2]. In this contribution, 
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is assumed to be uniformly distributed within the CP duration.
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Figure 6. Timing relationship of handover searcher in the synchronized network
The advantage of the synchronized network is that the UE can employ the microscopic DRX technique for the neighbor cell search in the idle state. As shown in Figure 7, the power-on period of the microscopic DRX may be less than 20%. Assuming only the neighbor cell search for the UE in the idle state, the microscopic DRX technique is expected to save the UE’s power significantly in the synchronized network.
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Fig. 7. Two-step DRX technique for the neighbor cell search in UE’s idle state (only for the synchronized network)

4-2. Non-synchronized network
Even in the non-synchronized network, the sector cells belonging to the same Node-B may be  synchronized and some Node-Bs may be synchronized in order to support multi-cell MBMS services. In addition, the sync slot boundaries of two Node-B’s operating in a non-synchronized mode can be overlapped due to an independent clock drift in each Node-B. Thus, if the initial cell search algorithm (the two-step search algorithm in [1]) is used for handover cell search without any modification, timing ambiguity can arise in the first step. In order to avoid this problem, the search window is divided into two parts, i.e., synchronized and non-synchronized regions. A different search process is applied to each region. That is, in the non-synchronized region, the initial cell search algorithm (first step and second step) is applied while in the synchronized region, only the second step with home cell component nullification technique is used as in Sec. 4-1.
Note that the first step of the two-SCH scheme in the non-synchronized region is based on the full coherent correlation (128 samples) because the frequency offset is small in neighbor cell search environment. Unlike the synchronized network case, the microscopic DRX technique for neighbor cell search cannot be used in the non-synchronized network because the UE does not know the coarse frame timing of neighboring cells.
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Figure 8. Two different search regions for the non-synchronized network

V. Simulation Condition and Results
Table 1 shows the simulation assumptions. Unlike the initial cell search case, there is little frequency offset in neighbor cell search environment. Since the handover takes place more frequently in high mobility environment than in low mobility environment, we consider the vehicle speed up to 350 km/hr in this contribution.
Table 1. Default simulation assumptions
	Transmission BW
	1.25 MHz

	Carrier frequency
	2 GHz

	FFT Size
	128

	CP length (NCP)
	10 sample

	Total Number of used subcarrier
	76

	Frequency offset
	200 Hz

	Number of active sub-carriers of the synchronization symbols
	38 for the hierarchical scheme (37 is null)                                   

75 for non-hierarchical scheme (37 for P-SCH, 38 for S-SCH)

	Number of GCL sequences (=alphabet size of hopping code)
	40

	Number of physical cell ID = number of hopping patterns (NCell)
	236 : see appendix A in [1]

	Number of sync slots per 10 msec frame
	5

	Channel Model
	TU (6 paths) and high mobility environments (120 Km/hr, 350 Km/hr)

	Antenna configuration
	2 TX and 2 Rx (default antenna configuration)

	Antenna diversity
	TSTD at the Tx and EGC at the Rx

	Loading for data traffic channel
	Full load (100% loading) over 76 sub carriers
The same power between SCH and Data

	The first step in the non-synchronized region
	Two-SCH scheme
	Half length (64 time samples) coherent correlation and non-coherent addition of two segments (+/- 1 CP decision region assumption)

	
	One-SCH scheme 
	differential correlation

(+/- 1 CP decision region assumption)

	The second step
	Two-SCH scheme
	Coherent code detection

Coherent antenna combining

Coherent time(symbol) averaging

	
	One-SCH scheme
	Differential code decoding(Non-coherent)

Non-coherent antenna combing

Non-coherent time(symbol) averaging


VI. Neighbor Cell Search Performance Comparison
6.1. Synchronized network
Figures 9 - 12 show the cell search time performance of the one-SCH scheme and the two-SCH scheme for different values of 
[image: image22.wmf]arg

/

tetOC

II

s and vehicle speeds in the synchronized network. Here, we assume the worse case hard handover with 
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 = 0 dB. For the two-SCH scheme, coherent detection is used in the second step. Both schemes show good performance in the worst case hard handover environment with 
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= 0 dB. The two-SCH scheme with coherent demodulation performs better than the one-SCH scheme but the performance difference is very small. 
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Figure 9. Cell search time comparison in synchronized network when 
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[image: image28.png]CDF

100

=0dB, TU-6 350 km/hr, N__

' “target home

Search Time




Figure 10. Cell search time comparison in the synchronized network when 
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Figure 11. Cell search time comparison in synchronized network when 
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Figure 12. Cell search time comparison in synchronized network when 
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6.2. Non-synchronized network case

Figure 13-16 show the cell search time performance of the one-SCH scheme and the two-SCH scheme for different values of 
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 in the non-synchronized network. In order to simplify the problem, we assume the frame time of the target cell is located in the asynchronous region which is illustrated in Figure 8. For neighbor cells whose frame timing lies in the synchronous region, we can apply the sync-type cell search algorithm described in Sec. 4-1. In this case the cell search performance is expected to be similar to the one in the previous Sec. 6.1. The one-SCH scheme and the two-SCH scheme show almost the same performance when 
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= 0 dB. However, the two-SCH scheme is slightly better than the one-SCH scheme when 
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= 0 dB, which maybe corresponds to the worst case hard handover situation. In this simulation, we restricted the first step success criteria as when the detected boundary locates within 
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 CP duration of actual symbol timing for both one-SCH scheme as well as two-SCH scheme. If we loose this criteria, the cell search performance of one-SCH scheme can be improved as shown in [5]. In this case, of course, the search window of the fine timing detection stage becomes a little bit larger.
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Figure 13. Cell search time comparison in non-synchronized network when 
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Figure 14. Cell search time comparison in non-synchronized network when 
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Figure 15. Cell search time comparison in non-synchronized network when 
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Figure 16. Cell search time comparison in non-synchronized network when 
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 and 350 km/hr vehicle speed.
VII. Conclusions
· In this contribution, we have compared the neighboring cell search performance of the one-SCH scheme and the two-SCH scheme, both of which support efficient inter-RAT measurement.
· It has been shown that both schemes have good performance in the worst case hard handover situation (that is, 
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 = 0 dB)
· 90% cell search time is 10 msec for both schemes in the synchronized network.

· 90% cell search time is 20 msec for both schemes in the non-synchronized network.

· It has been shown that the performance of the two-SCH scheme is similar to or slightly better than the one-SCH scheme in the worst case hard handover situation. In the initial cell search case, however, the one-SCH scheme performs better than the two-SCH scheme [4].

· Both schemes show good performance in the initial cell search as well as neighbor cell search. However, the two-SCH scheme has much higher complexity than the one-SCH scheme in the first step detector [1], as shown in the following table.
	First step detector
	Differential correlator

(one-SCH scheme)
	replica based correlator
(two-SCH scheme)

	Number of complex multiplications per second
	3.84 M
	247.68 M
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