3GPP TSG RAN WG1#45
R1-061132
Shanghai, China, May 8th – May 12nd, 2006
Agenda Item:
11.6.5
Source:
HighDimension Ltd.
Title:
Implementation complexity and power consumption concerns in channel coding
Document for:
Discussion
1 Introduction

This contribution provides evaluation measures for popular coding technologies. We will clarify two complexities, hardware complexity and computation complexity. Hardware complexity is evaluated by IC area (die size). IC area dominates implementation cost. Memory space, network routing, routing control and APP decoder complexity dominate IC area. Computation complexity determines power consumption and required APP decoders for turbo code or processing nodes for LDPC code.
Memory space dominates LTE decoder hardware cost. No matter how slow the decoder, required memory does not change so much. If the codeword length is long, memory space dominates hardware complexity. Unfortunately, LTE must support at least 5,114 bits data length and 15,342 bits codeword length. Memory dominates turbo code and LDPC code decoder cost. Besides, LDPC code decoding algorithm requires more memory to support extrinsic information exchange. Therefore, turbo code defeats LDPC code at this part.
Under process 0.13 μm, turbo code decoder requires about parallel 8-16 APP decoders to support LTE requirement. LDPC code requires more than 100 processing nodes to support required throughput due to larger iteration number and diverse decoding architecture. LDPC code is proud of diverse decoding architecture which supports any high throughput but it results in another problem: complexity network routing. Arranging 100 processing nodes network is not simple issue. Routing congestion has been pointed out the most troublesome issue in LDPC code decoder implementation. 20%-50% IC area for LDPC code routing is general. Various code rates and data lengths result in complex routing control. Turbo code does not face this problem. Therefore turbo code one more defeats LDPC code on parallel processing architecture if interleaver supports.
One turbo code APP decoder complexity is much larger than one LDPC code processing node complexity. For one-to-one module comparison, turbo code far loses to LDPC code. However, LDPC code requires 10 times more processing nodes than the number of APP decoders in turbo code to support low latency. Far complexity difference becomes slightly.
Computation complexity dominates power consumption. Message passing (information moving) also dissipates power. Message goes through routing network. Larger average route distance of a network implies larger power dissipation. A complex network usually has a large average route distance and consumes enormous power. If computation complexity is a critical issue, network power dissipation deserves attention.
Although it seems that turbo code defeats LDPC code at most parts under hardware complexity concern, that fact that Rel’6 turbo coding does not support parallel processing still holds right now. If throughput issue is not solved for Rel’6 turbo coding, giving up Rel’6 turbo coding is the way.
The following discusses hardware and computation complexity for both turbo codes and LDPC codes. Main power consumption factors are also discussed. Real examples are also provided as our references.
2 Hardware complexity, computation complexity, throughput and cost
Implementation cost is always the main concern. Hardware complexity dominates the cost. More specifically, the worst case hardware complexity dominates the cost. It is very weird to claim average hardware cost over all code rates when one decoder requires high cost at low code rate and low cost at high code rate. The worst case is always necessary except one case requires one decoder. If one case really requires one decoder, we should substitute averaging by summing. Therefore the cost is dominated by the worst case.
Memory dominates hardware complexity for LTE requirement. Large memory unit also requires high message passing power consumption. Both codes must store large received samples and temporary information (extrinsic information) for ensuing processing. Memory is a critical issue for both turbo codes and LDPC codes, especially for LDPC code. Information exchange in LDPC code decoder is very inefficient and the decoder requires large memory space. For the worst case (code rate = 1/3) it must store 10 times more temporary information comparing to turbo code. The total memory size of LDPC code decoder is 5 times more than that of turbo code decoder. LDPC code costs large to support worse cases hardware complexity in terms of memory space and so does memory access power consumption.
Computation complexity means total number of operation for one codeword decoding and determines power consumption. Computation complexity comparison is not a main issue for nowadays ASIC design or hardware cost because supporting LTE throughput requires much less ASIC area for total processing units especially for LDPC code. DSP realization focuses on computation complexity because of processor’s limited processing units and fixed architecture. However, computation complexity is meaningless on ASIC design because processing unit is not limited. 10 to 500 processing units’ realizations are very normal for recently high speed coding system especially for LDPC code. Throughput is unlimited. We conclude that computation complexity determines power consumption and number of processing units determines partial hardware cost.
Complexity routing network issue resulted from low complexity processing nodes and requisite highly parallel processing architecture. Parallel processing increases decoding throughput and LDPC code possesses large flexibility in this property. LDPC code can support very high decoding throughput. However parallel processing induces routing complexity between memories and processing units. If there are many kinds of code rates and data lengths, the routing control becomes a severe issue. Besides complexity network enlarges required IC area and consumes large power consumption for message passing. In fact, LDPC code generally requires 20-50% area for routing network. Simplicity provides a tough network problem. Therefore the parity check matrix of LDPC code must support low complexity routing architecture.
Although Rel’6 turbo coding does not face complex routing issue, its interleaver does support high throughput decoder architecture. Its modification seems necessary.
Following will detail issues about memory, processing node complexity, throughput, interleaver, parity check matrix, and network. Real examples prove these discussions.
2.1 Memory
Memory counting is listed in this sub-section and the worst case memory size can be easily calculated. One can simply evaluate required memory size. Assume data length is N, code rate is R in the following discussion.
2.1.1 Standard turbo code
Standard turbo code encoder permutes information by bits. Decoder temporarily stores two extrinsic information sequences with length N. Therefore decoder stores 2N+N/R soft bits. Note that this number does not count tail-bits. If R=1/3 and N=5114 bits which are the lowest code rate and the maximum length of Rel’6 turbo coding, the required memory is 25570 (+12 tail bits) soft bits.
2.1.2 Duo-binary turbo code
Duo-binary turbo code encoder is a non-binary turbo code. It permutes information by symbols where each symbol is equivalent to two bits. Decoder stores likelihood instead of likelihood ratio. Two bits induce 4 possibilities and require 4 soft bits. Each extrinsic information symbol requires 4 soft bits. Consider N=5114 and R=1/3, the equivalent symbol length is 2557 symbols. The required memory size is 4*2557*2+4*2557*3=40912 soft bits. The number is similar to 8/5 times to standard turbo code. Note that duo-binary turbo code applies tail-biting encoding.
The required memory space can be reduced for duo-binary turbo code. If the two bits on received samples are independent, we can use 2 likelihood ratios instead of 4 likelihoods. The extrinsic information also can use 3 likelihood ratios instead of 4 likelihoods but this format requires the larger width of soft bit. The new number is 2*2557*2+3*2557*3=33241 soft bits. The duo-binary turbo code decoder cost at least 30% more memory space comparing to standard turbo code when maximum data length=5114 bits and code rate=1/3.
2.1.3 Low density parity check code
The amount of temporary information stored in a LDPC code decoder depends on number of 1 on each row or column in the parity check matrix. The matrix is often represented by a factor graph and the storage is also linear to total number of the edges. A simple notation (Rv, Rc) used describes LDPC code denotes number edges connecting variable node and check node in a graph. One can simply count number of the edges by this notation.

If data length is N, the corresponding codeword length is N/R. The edge number from variable nodes to check nodes is Rv*N/R and so is the number from the check nodes to variable nodes. Sum up with received samples N/R, General LDPC code decoder requires (2*Rv+1)*N/R. Take N=5114 bits, R=1/3, and Rv=3, which is common number for LDPC code, the required memory number is (2*3+1)*5114*3=107394 soft bits. This number exceeds four times to standard turbo code.
Another method stores summed soft bits on variable nodes and calculates extrinsic information on check nodes. The decoder requires 2N/R soft bits on variable nodes and Rv*N/R soft bits on check nodes. Total number is (Rv+2)*N/R. Take N=5114 bits, R=1/3, and Rv=3, which is common number for LDPC code, the required memory number is (3+2)*5114*3=76710 soft bits. This number is almost three times to standard turbo code. Note that this method requires extra hardware complexity (IC area) on control procedure and schedule design especially for irregular LDPC codes which are promoted in our meeting.
Choosing min-sum algorithm further saves extra memory on the LDPC decoder by paying about 0.5 dB performance loss. One can store two values (maximum and the 2nd maximum values) on check nodes and check nodes only store 2 values instead of Rc values. The storage on variable nodes is 2N/R soft bits and that on check nodes is (N/R-N)*2 soft bits. Total required memory number is 4N/R-2N=(4/R-2)N soft bits. Take N=5114 bits, R=1/3, and Rv=3, which is common number for LDPC code, the required memory number is (4*3-2)*5114=51140 soft bits. This number is almost two times to standard turbo code.

2.1.4 Examples
These examples are provided in the contribution R1-060874 [8] about complexity comparison between LDPC code and turbo code. This contribution provides a clear comparison baseline on hardware implementation for LDPC and turbo code.
This contribution provides three examples of LDPC codes, proposed by Massimo Rovini (Pisa, Italy) [9], Se-Hyeon Kang (KAIST, Korea) [10], and Mohammad M. Mansour (UIUC, USA) [11], which apply the codeword length of 1944, 1024, and 2048 bits, respectively. However, the objective maximum codeword length is 5114*3=15342 bits by now, maximum data length=5114 bits and minimum code rate=1/3 (code rate may be lower in the future). To achieve the maximum codeword length, the required memory size for LDPC code decoder is more than 7.5 times to the examples. Therefore, in 0.18 μm process, the memory size of a LDPC code decoder is more than 20 mm2 (6.96*0.4*7.5=20.88mm2, 10.08*0.4*15=60.48mm2, 2.56*7.5=19.2 mm2) under these three cases, where 6.96*0.4, 10.08*0.4, 2.56 comes from these code implementation parameters.
The same contribution R1-060874 [8] also provides an example of turbo code proposed by Ibrahim A. Al-Mohandes (Waterloo, Canada) [12]. This decoder applies codeword length 3072 bits and only requires 0.56mm2 in 0.18 um IC area for overall decoder. We can expect the area of a turbo code with maximum codeword length is no more than 0.56*5=2.8mm^2, which means eight times less in hardware cost compared to the LDPC code. In fact, this factor may be larger because APP decoder is also count as memory. Note that this result is susceptible for me.

The reference [11] provides a reasonable turbo decoder example which is proposed by M. Bougard [3]. The data length is 5114 bits and code rate is 1/3. The required total area is 14.5 mm2 and includes APP decoders. The number is still smaller than the estimated memory size of LDPC code examples shown above.
2.1.5 Nowadays memory technology
Due to the memory control, the use of 128 soft bits memory bank is favourable. If the length of memory bank is reduced, the memory control will occupy too large percentage of each memory bank and enlarge hardware complexity. However, enhancing the throughput requires large number of processors and forces to use the shorter length memory bank. This is severe to LDPC code decoder. Although advanced memory or register technology may avoid the control units, one unit storage may requires larger area and the decoder requires larger hardware cost. This explains the reason LDPC code decoder requires larger memory space. More specifically, LDPC code decoder requires the more controls on memory access.
2.1.6 Summary
LDPC code is a complex code in terms of memory size. It requires the largest memory space. Even for high code rate decoding mode, the cost can not be reduced so much. Moreover low code rate is necessary and the cost is higher. Duo-binary turbo coding requires slightly higher memory requirement because of non-binary coding but provides higher throughput which will be mentioned in the following. Standard turbo code requires less memory space but may not support high throughput.
2.2 Processing unit
Turbo code requires a larger processing unit than LDPC code. Although the unit of turbo code decoder requires larger temporary buffer and more complex mechanism than LDPC code, many operations can be processed in parallel in one unit and required number of the unit is few. The unit of LDPC code is very simple but only few operations can be processed in parallel in one unit. Therefore the required number of LDPC code processing unit is large.
Comparing only one processing unit, LDPC code completely beats turbo code. However, LDPC code decoder requires more processing units to support throughput requirement than turbo code decoder. The edge becomes less or reversed.
2.3 Throughput
Turbo code possesses parallel processing problem but LDPC does not. Decoupling LDPC code decoding into highly parallel architecture is simple but decoupling turbo code decoding is hard. Interleaver structure and convolutional code escalate the difficulties.
The causality of convolutional code mainly influences the decoupling. The following data symbol requires prior and successive message to decode. Parallel processing is not feasible for short length. Causality limits the throughput.

Interleaver structure may prohibit parallel memory accessing and writing. Although partitioning sequence into multiple long enough sequences for parallel processing enhances throughput but interleaver structure results in memory access collision. Parallel accessing or writing is infeasible and parallel processing is meaningless. Interleaver structure limits the throughput.
Supporting memory access free is the interleaver design guideline. For example: duo-binary turbo code supports at least order 4 memory access collision-free. The throughput is enhanced by 4 times. One can use 4 processors to decode this code and acquire high throughput but parallel processing induces network problem.
Remark: LDPC code can apply large maximum iteration number because of high throughput and matching decoding latency requirement. Turbo code decoder also can apply large maximum iteration number to achieve higher performance if the worst case decoding latency is short enough.

2.4 Interleaver, parity check matrix and network
Interleaver and parity check matrix dominate network complexity for turbo code and LDPC code respectively. Parallel processing induces network problem for LDPC code due to its inherently highly parallel decoder architecture. The network problem is not severe for turbo code because the required number of processing units is not large. Therefore this issue is only for LDPC code.
Four reasons explain why network routing issue is severe for LDPC code decoder. First, LDPC code requires larger iteration number to provide acceptable performance and therefore decoder has to implement more processing nodes to support throughput. Second, in LDPC code decoder, one processing node generates messages to multiple destinations or memory banks. In turbo code decoder, it generates information to one destination or memory bank. Therefore more connecting routes are required to support more extrinsic information exchanges and this complicates network complexity. Third, the processing units are too simple and processing nodes would be reused often. Highly reusing a processing node implies the manipulated information from and to more memory banks during one iteration decoding. Turbo code decoder can only access one memory bank during one iteration decoding. The simplicity results in higher network routing loading. Fourth, supporting multiple code rates and data lengths implies different parity check matrix. Supporting multiple parity check matrix complicates network routing issue. The routing issue is critical for LDPC code.
Thanks to the contribution R1-060874 [8] again. The LDPC code decoder proposed by Mansour [11] demonstrates clear layout. Routing network occupies 3.28 mm2 which is 22.94% of IC area 14.3 mm2. Although network routing is optimized by a parity check matrix, more than 20% IC area is still necessary. Besides it only support one codeword length and three code rates. One can expect network routing is an important issue for LDPC code supporting LTE requirement.
Another three examples is shown. A. J. Blanksby [1] provided a decoder with density efficiency 50% due to routing problem. This also means the decoder requires 50% more IC area to support networking. Their conclusion re-mentioned that routing congestion dominates design complexity instead of computation complexity. C.-C. Lin [2] provided another design for LDPC code. They used 8-layer and 6-layer metal to reduce routing occupancy but still provided around 75% and 71.2% density efficiency respectively. C. J. Howland [3] applied the 5-layer metal realization but the realization only has 50% utilization because of routing.
A good LDPC code design must support low complexity network. The required memory has occupied large IC area. If further routing network requires more than 100% to 25% hardware complexity cost, the code becomes too expensive.
3 Power consumption measure
Power consumption calculation can be separated into two perspectives: message passing and computation complexity. In general we calculate power consumption in terms of computation complexity and message passing power consumption is neglected. However moving message sometimes requires more power than computation. Memory control requires power. Loading message from memory requires power. Storing message into memory requires power. Moving message from memory to computation nodes requires power. Returning message from processing nodes to memory requires power. More complex routes between processing nodes and memory require more power. Longer distance between processing node and memory requires more buffers to shift message and consumes much power. Besides computation is performed in small area and computation is simple for both LDPC code and turbo code. Therefore computation may require less power and message passing requires more. Reference [4] showing memory access effect will be provided in the following subsection and its results reflect message influence.
This section provides a simplified power consumption measure on both perspectives in the following subsections and one can have an intuitive justification on power consumption. References are also provided to support our inference.
3.1 Memory access and message passing
Power consumption on message passing can be measured by how many information symbols should be manipulated at one decoding round and how much information symbols should be returned. Turbo code and LDPC code have different realizations in two decoding rounds of one iteration. Both phases will be considered separately and the same notation in previous section will be reused in the following.
3.1.1 Turbo Code

Turbo code encodes data by two convolutional code encoder with R1 and R2, where R=1/(1/R1+R2). The first encoder generates systematic bits and parity check bits and the second encoder generates parity check bits only.
At the first decoding round, APP decoder accesses N/R1 received samples and N a priori information symbols. After decoding, it returns N extrinsic information symbols. The total message moving number is 2N+ N/R1 symbols.
At the first decoding round, APP decoder accesses N/R2 received samples and N a priori information symbols. After decoding, it returns N extrinsic information symbols. The total message moving number is 2N+ N/R2 symbols.

In one iteration, turbo decoding shifts 4N+N/R1+N/R2=4N+N/R symbols in total. Assume Iturbo iterations is processed, total shift is (4N+N/R)*Iturbo symbols. We consider two cases for high rate and low rate. The first case considers code rate is 1/3, N=5000bits and Iturbo=10, total shift is 350000 symbols. The second case considers code rate is 3/4, N=5000bits and Iturbo=10, total shift is approximately 266667 symbols.
Remark: One may consider that APP decoder also requires systematic part at the second decoding round. In fact systematic part can be coupled with extrinsic information and required message moving and interleaving are saved.
3.1.2 LDPC code
LDPC code decoder processes iterative decoding by check node processors and variable node processors. Check node processor manipulates a priori information only and returns extrinsic information. Variable node processor manipulates a priori information and received samples and returns extrinsic information.
Unfortunately, the manipulated a priori information and generated extrinsic information for one check node processor or variable node processor are all different. Even for min-sum algorithm producing only two kinds of soft values from check nodes and variable nodes, we still can not combine or reuse the generated information to move because the largest value is not certain to which check node or variable node processors. Therefore, more edges connecting to one processor, more information moved.
One can consider moving information from check node processors to variable node processors to reduce message moving between memories or registers and save message moving power. However, this realization is incredible large and routing is too complex. Therefore storing message in memory or register is unavoidable.
LDPC code encodes length N data sequence. The codeword length is N/R. We still consider average number from variable nodes to check nodes is still Rv. Therefore there are total Rv *N/R edges from variable nodes to check nodes and vice versa, because total edges from variable nodes are the same as total edges from check nodes.
At the check phase, all check node processors manipulate total Rv*N/R a priori information symbols and generate Rv*N/R extrinsic information symbols. The total message moving number is 2*Rv*N/R symbols.
At the variable phase, all variable node processors manipulate total Rv*N/R a priori information symbols and N/R received samples. They also generate Rv*N/R extrinsic information symbols. The total message moving number is N+2*Rv*N/R symbols.

In one iteration, LDPC code decoding shifts N+4*Rv*N/R symbols in total. Assume ILDPC iterations is processed, total shift is (N+4*Rv*N/R)*ILDPC symbols. We consider two cases for high rate and low rate. The first case considers code rate is 1/3, Rv=3, N=5000bits and ILDPC=10, total shift is 1850000 symbols. The second case considers code rate is 3/4, Rv=3, N=5000bits and ILDPC=10, total shift is approximately 850000 symbols.

Total shift symbols in LDPC decoding are 3-6 times to that in turbo decoding. In fact, LDPC code requires more decoding iterations and the power consumption due message passing is severer. If we consider low power design, LDPC is not favourable.

LDPC code message passing power consumption can be reduced by proper parity check matrix design and IC planning. Proper parity check matrix eliminates route or network complexity. The density efficiency can also be improved to reduce implementation cost. However, optimized network may cause performance loss and inflexibility for different code rates.
3.1.3 Power dissipation on message passing
[4] provided an exemplary turbo decoder implementation. They allocated buffer to store message and reduced almost 95% power consumption. Even turbo decoder requires many computations in APP decoder but message passing mainly dominates power consumption. To improve power consumption in an iterative decoder, reducing message-passing distance is the first priority.
Remark: FPGA and DSP realizations have severer power consumption on message passing due to separate memory design and inflexible network planning.

3.2 Computation complexity
In general, turbo decoder decoded with similar computation complexity at both high and low rates. Therefore, LDPC code decoder claims low computation to turbo decoder at high rate but loses computation to turbo code at low rate. In fact, turbo decoder can also process decoding over dual domain [5,6] to reduce computation complexity over high rate. However, turbo decoder has to pay more hardware complexity to transform codeword into dual domain.
4 Predicament
We provide some implementation issues on both codes. Although many results are prone to turbo code, turbo code can not satisfy performance requirement in terms of latency. Issues are discussed in the following.
4.1 Turbo code
Rel’6 turbo coding does not support parallel processing. Although the required memory space is small, throughput can not reach 100 Mbps requirement. One can implement two or four separate decoders but latency is still an issue. This also double hardware cost.
[7] has provide a 760 Mbps @ 256MHz solution. They applied an orthogonal interleaver design and memory accessing problem is solved. However, this kind interleaver design may deteriorate performance due to more constraints on Interleaver design. A commercial applicable interleaver design seems not easily achievable.
4.2 LDPC code
LDPC code decoder has a problem on hardware cost. Power may also be an issue for this kind of code. To support high rate, designer may pay more redundant IC area for routing plan. Even routing problem solved for one length, there are still more than 5000 kinds of parity check matrices, 40-5114 bits, and different code rates. The low complexity routing network must support so large rage of codewords. Decoder may require more redundant IC area. Even network problem solved, memory cost is unavoidable.

The last problem is backward compatibility. To reduce routing complexity, memory may be specially allocated on the die. Besides, APP decoder must be extra allocated. The last solution may be two kinds of different decoders implemented in one core. It also means at least doubled memory and may imply at least triple hardware complexity.
5 Conclusion
Although this document is highly prone to turbo code, it does not imply turbo code is necessary. We provide these issues to remind that real hardware cost may not only rely on computation complexity. Memory and network routing sometimes influence significantly on overall hardware complexity although LDPC code computation is extremely low. We highly recommend that the parity check matrix must support low memory, simple network routing and performance at the same time. Besides, complexity supporting backward compatibility must be considered because Rel’6 turbo coding is necessary.
In my point of view, computation complexity is not the first design priority of LDPC code. If I give the priority on LDPC code design, the first is memory storage including extrinsic information bit-width, the second is network routing, the third is control and the last is computation component. If there is an outstanding memory technology, the first may be network routing, the second is control, the third is memory and the last is computation component. Computation component is at the last because it is too simple and mature. Practical implementation reflects these priorities.
The contribution R1-061131 [14] provides an exemplary coding system. The coding system features simple network routing supporting extreme high throughput architecture. That code also support high rate performance. Besides, backward compatibility is supported. If physical layer security is important, LDPC code may have to extra support it. This may be the baseline for LDPC code design.
6 References
[1] A. J. Blanksby, C. J. Howland, “A 690mW 1Gb/s 1024-b, rate-1/2 low-density parity-check code decoder,” IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp. 404-412, Mar. 2002.
[2] C.-C. Lin, K.-L. Lin, H.-C. Chang, C.-Y. Lee, “A 3.33Gb/s (1200,720) low-density parity check code decoder,” ESSCIRC 2005, pp.211-214, Sep. 2005.
[3] C. J. Howland, A. J. Blanksby, “A 220mW 1Gb/s 1024-b, rate-1/2 low-density parity-check code decoder,” IEEE Conference on Custom Integrated Circuits, pp. 293-296, May. 2001.
[4] F. Maesen et. al. “Memory Power Reduction for the High-speed Implementation of Turbo Codes,” Symp. on Vehicular Comm. and Tech., Belgium. 2000.

[5] J. Berkmann, C. Weiβ, “On dualizing trellis-based APP decoding algorithms,” IEEE Trans. on Commun., no. 50, no. 11, pp. 1743-1757, Nov. 2002.
[6] C. Weiβ, Error Correction with Tail-Biting Convolutional Codes, weissdruck & verlag 2002. ISBN 3-00-009426-1.

[7] G. Prescher, T. Gemmeke, T. G. Noll, “A parametrizable low-power high-throughput turbo-decoder,” IEEE ICASSP 2005, vol. 5, pp. 25-28, Mar. 2005.
[8] R1-060874, Complexity comparison of LDPC codes and turbo codes, Intel, ITRI, LG, Mitsubishi, Motorola, Samsung, ZTE.
[9] M. Rovini, N. E. L'Insalata, F. Rossi, and L. Fanucci, "VLSI design of a high-throughput multi-rate decoder for structured LDPC codes, " In 8th Euromicro Conference on Digital System Design (DSD05), Portugal, pp. 202-209, Aug.-Sep. 2005.
[10] S. H. Kang and I. C. Park, "Loosely coupled memory-based decoding architecture for low density parity check codes," IEEE Tran. Circuit and Systems, Accepted for future publication.
[11] Mansour, M.M.; Shanbhag N.R. "A 640-Mb/s 2048-Bit Programmable LDPC Decoder Chip", IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp. 684-698, Mar. 2006.
[12] I. A. Al-Mohandes and M. I. Elmasry, "Low-energy design of a 3G-compliant turbo decoder," NEWCAS2004, pp. 153-156, Jun. 2004.
[13] M. Bikerstaff et al., “A 24 Mb/s radix-4 LogMAP turbo decoder for 3GPP-HSDPA mobile wireless,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2003, pp. 150-151.
[14] R1-061131, A simple inter-block permutation in channel coding to provide backward compatibility and secure transmission, HighDimension
Contactor: Zheng Yan-Xiu

e-mail: zyx@highdimension.com.tw

PAGE
9

