3GPP TSG RAN WG1#45
R1-061131
Shanghai, China, May 8th – May 12nd, 2006
Agenda Item:
11.6.2
Source:
High Dimension Ltd.
Title:
A simple inter-block permutation in channel coding to provide backward compatibility and secure transmission
Document for:
Discussion
1 Introduction

A new block-type inter-block permutation turbo code is presented. The new code is compatible with Rel’6 turbo coding [1]. The code applies a simple inter-block permutation algorithm to construct a code, which is extended from the streaming type IBPTC (S-IBPTC) [2] in R1-060513 [3]. This algorithm features periodic permuting multiple block-interleaved sequences, where the block interleavers defined in 3GPP/3GPP2 can be used. The existing convolutional code encoder and decoder are reusable and memory is co-usable. Therefore, the proposed architecture requires much less hardware evolution cost than LDPC code in supporting Rel’6 turbo code.
In addition, the high parallelism in B-IBPTC results in low latency and high throughput performance. The B-IBPTC interleaver is structurally constructed by inter-connecting multiple identical block interleavers. The structural interleaver provides high parallelism and avoids the collision in memory bank access. Therefore, the data sequences can be decoded in parallel and the decoding throughput can be largely increased. In other words, the proposed IBP concept supports contention-free interleaving which has been clearly pointed out in Motorola’s contribution R1-060021 [4]. However, the Rel’6 turbo coding interleaver does not support contention-free interleaving and therefore latency issue becomes severe under LTE requirement which has been motioned in Samsung’s contribution R1-060356 [5].
The B-IBPTC applies network-oriented IBP algorithm and provides flexibility in hardware architecture. To achieve high throughput requirement in LTE, the interface for the information passing between processing nodes and memories is more than 4-40 Gbps. Implementing a high throughput decoder is to design a high throughput parallel processing architecture. The network-orientated IBP algorithm simplifies interface implementation. Conventional computer architecture could be applied, and the hardware cost of routing network in die size can be further minimized. Extremely high throughput and low hardware cost design can be easily achieved by network-spanning and –folding and extended for the higher throughput demands in the future.. Note that the hardware cost of network routing for more than 200 processing nodes is very critical for LDPC code decoder, where usually occupies 20-50% die size.
The fanciest feature of B-IBPTC is the data encryption. The network configurations achieve the random IBP interleaving, and thus realize the service differentiation and secure transmission. Since all the users can hear the transmissions on the wireless channel, the service differentiation with secure transmission is the essential function for MBMS. The licensed clients use the specific channel codes and acquire the registered services. The secure transmission avoids other unlicensed user or malicious attackers receiving the private information if physical layer encryption is implemented inside. Therefore, B-IBPTC provides not only a low hardware cost, low latency channel coding, but also a service differentiation capability and secure transmission for MBMS.
2 Encoding and interleaving method
2.1 Encoding method
Figure 1 demonstrates a backward compatible encoder of B-IBPTC [1]. The encoding operation is similar to the conventional turbo codes, except for the new proposed block type inter-block permutation interleaver (B-IBPI). A B-IBPI inter-connects block interleavers, which will be detailed. Co-design between Rel’6 turbo coding interleaver and B-IBPI is trivial and thus the backward compatibility is feasible.
[image: image1.jpg]Conwolutional Code

VY

» Encoder
L
B-IBPL
Convolutional Code

Encoder

Fig. 1: B-IBPTC encoder.
[image: image2.jpg]1 2 3 4
ot |201002, (101,102, 201,202, 301,302,
SP“ 003,004, |103,104, |203.204, [303,304,
eqUENCES 605 006,.. [105,106.. [205,206,. (305,306,
Intra-Block
Permutation
Intra-Block004,073, (104,173, |204,273, [304,373,
Permuted (094,025, (194,125, (294,225, 394,325,
Sequences [038,062,.. [138,162,. [238,262,. |338.362,
Inter-Block
Permutation
Inter-Block004,173, 104,073, (204,373, 304,273,
Permuted [294,325, |394,225, 094125, 194,025,
038162,.. |138,062,. [238,362,. |335,262,

Sequences

Fig. 2: An example of the B-IBPI with 4 blocks.

2.2 Block type inter-block permutation
The B-IBPI is composed of two-stage interleaving: intra-block and inter-block interleaving. Each block applies identical permutation rule. Inter-block permutation periodically swaps the intra-block interleaved symbols. The same permutation rule in all blocks and swap functionalities provide contention-free interleaving property. Shorter block-interleaving and periodically swapping also reduces implementation cost.
Figure 2 demonstrates an example of the B-IBPI with the B-IBP period P=4. These numbers in each block indicate the original positions of input data sequence. The principle of B-IBPI is described as follows. At first, data at each block in the first stage is permuted by an identical permutation rule. Then, the intra-block permuted data in the second stage are periodically swapped with the data in all the other blocks. Periodic permutation simplifies implementation and swap avoids memory access collision. B-IBP claims parallel processing capability.
2.3 Short encoding latency

Tail-biting encoding on conventional turbo code reduces power consumption on tail bits but it also doubles encoding latency to conventional tail-padding encoding. Our code encodes each block separately and parallel encoding is feasible. If latency is a critical for the system, our code supports high throughput encoding.
2.4 Network-oriented IBP
Figure 3 (a) demonstrates the hardware implementation of a four-block inter-block permutation as shown in Figure 2. A 4x4 butterfly network is applied, where the upper and lower blocks can be APP decoders and memory banks or vice versa. Denote “0” as direct switching and “1” as oblique switching. Therefore “00”, “10”, “01” and “11” can be used for the network control, where the first bit determines the upper butterfly switching and the second bit determines for the lower butterfly switching. We can use this control signal to fulfill the B-IBP in Figure 2, At the first position “00” is applied; at the second position “10” is applied; at the third position “01” is applied; at the fourth position “11” is applied; at the fifth position “00” is reapplied.
Network oriented IBP requires less network routing complexity. The previous example matches the butterfly network. This minimizes the routes and reduces routes congestion. The control signalling is simple. Memory access problem is simply solved. The network is not unique and the conventional parallel architecture can be applied without adding too many efforts. Furthermore, compared to the network routing issue of LDPC, B-IBPTC requires far less complexity.
[image: image3.jpg]o

(b)

(a)

Fig. 3: (a) A 4x4 butterfly interleaving network; (b) The folded network.
In addition, the butterfly network shown in Fig. 3(a) can be simplified through folding the network which reduces the hardware cost in implementation. As shown in Figure 3 (b), block 1/2 and 3/4 are combined together and the edge is shared with each other. The APP decoder, memory and its controller can be shared with the adjacent blocks. Therefore, the hardware implementation cost can be lowered at the same time.
Table 1 shows the aforementioned B-IBP algorithm, where P is the number of inter-connected blocks; L is block length; D(m,K) is the symbol at the mth position of the Kth block. I is an array storing the IBP sequence with length P; ^ is exclusive OR operation.
Table 1: The exemplary B-IBP algorithm.

	10 for K=0 to P-1
20 { for i=0 to i=P-1
20 { m=i

30 if (K^I[i] < K)

40 while (m < L)
50 { swap D(m,K) and D(m,K^I[i])
60 set m=m+P } } }

2.5 Double prime interleaver
Although the interleaver in Rel’6 turbo coding can be adopted as the intra-block permutation interleaver in B-IBPTC, this interleaver does not support parallel memory accessing and thus it is unable to provide high throughput performance. We suggest a simple interleaver, namely double prime intra-block interleaver, which supports parallel memory accessing and outperforms the interleaver in Rel’6 turbo coding. Interleaving and de-interleaving can share the same computation unit to generate addresses for memory accessing. Therefore, it is greatly reduced the implementation complexity.
The permutation function for block length L is characterized by six parameters
[image: image4.wmf]111222

(,,,,,)

psLpsL

 as shown in eqn. (1). The block length L is equal to L1+L2. p1 and p2 are relative primes to L1 and L2 respectively. s1 and s2 are constant shift and in general s1=0.
[image: image5.wmf]x

êú

ëû

 is the integer of x. Due to assumption of p1 and p2, there exists exactly one inverse mapping function as eqn. (1) with similar six parameters
[image: image6.wmf]111222

(,,,,,)

psLpsL

))))

 and these parameters satisfy above constraints.

[image: image7.wmf](

)

(

)

(

)

(

)

111

2

222

2

mod21, is odd

()

mod2, is even

i

i

psLi

i

psLi

p

ì

´+´+

êú

ëû

ï

=

í

´+´

êú

ï

ëû

î

 (1)
3 Security

As described in Section 2.4, the network between the decoder and memory bank can be dynamically configured. One can re-arrange the control signalling to acquire a new code. In the case of Fig. 3, there exists 4!=24 kinds of IBP feasible interleavers and thus 24 B-IBPTC are available. If 16 blocks are inter-connected, we have at least 16!=20,922,789,888,000 kinds of B-IBPTC for one input data. These abundant codes can be further applied for the applications of security and service differentiation. As the receiver has no idea of the permutation function in the transmitter, it requires 20,922,789.888 seconds=242.16192 days to explore all the possibilities of the received data assuming the time to decode one code is 1μsec. On the other hand, the specific permutation function can be allocated to the registered clients for the MBMS services so that the other unlicensed users without the knowledge of correct function cannot decode the data in real-time. Therefore, the
4 A real synthesized example
We provide the parameters of a real decoder in Table 2. The process is 0.13μm. Code rate is 1/2. Data length is 4096 bits. Codeword length is 8192 bits. The decoder composed of 32 APP decoders. 32x32 butterfly network is applied. The target throughput is 1Gbps @ 8 iterations. The core area is smaller than 25 mm2. Chip density is about 80%. Memory 7.6 mm2 memory is synthesized for code rate=1/3 and the exact number is smaller. We adopt code rate=1/3 to facilitate readers to estimate real hardware area (cost).
Based on these parameters, B-IBPTC supporting 100 Mbps@8 iterations requires less hardware complexity. 4 APP decoders can support the rate and occupies close to 1.625 mm2. The resultant core area can be reduced by at least 11 mm2. Even consider 5114 (5120 including tail-bits) bits, required memory area is at most 20% more to 7.6 mm2 which is estimated over code rate=1/3. BIBPTC requires low complexity to support LTE requirement.
Remark on network: LDPC code decoder network pointed out in contribution R1-061132 [9] is an important hard complexity factor. Refer to Mansour [8] which is shown in contribution R1-060874 [7], the area of network occupies 3.28mm2 which is about 22.94% of core size 14.9mm2. The network in B-IBPTC only occupies no more than 0.1%. Besides, Mansour’s work applies one codeword length where parity check matrix is a network-fitting design. If LDPC code decoder supports variable codeword lengths and code rates, the expected area percentage may be much larger. Network is not an issue for B-IBPTC but is an issue for LDPC code.
Table 2: Parameters for a real B-IBPTC decoder
	Design
	B-IBPTC Decoder

	Technology
	UMC 0.13um

	Data length
	4096 bits

	Codeword length
	8192 bits

	Core area
	< 25 mm2

	Decoder area
	< 13 mm2

	Memory area
	< 7.6 mm2

	Network area
	0.078 mm2

	Outer Frequency
	60 MHz

	Operating Frequency (Inside)
	250 MHz (worst case)

	Data rate (MS/s)
	1 Gbps@8 iterations

5 Performance
The section provides the performance of B-IBPTC. The recursive convolutional code used in Rel’6 turbo coding [1] is used in these simulations. Rel’6 turbo coding applies tail-biting encoding for entire block and B-IBPTC applies tail-biting encoding for each sub-block. Log MAP algorithm is applied. We use double prime interleaver as intra-block permutation interleaver for B-IBPTC and Rel’6 turbo coding interleaver is for release 6 turbo coding. The B-IBP algorithm in Table 1 is used and IBP sequences in these simulations are randomly generated.
5.1 Code rate = 1/3
Figures 4 and 5 show frame error rate (FER) performance at AWGN and flat Rayleigh fading channels respectively. Data length L=64, 128, 256, 512, 1024, 2048 and 4096 are applied in these cases. Three kinds of double prime interleaver are applied;
[image: image8.wmf](5,0,16,5,8,16)

 for L=32,
[image: image9.wmf](5,0,32,5,18,32)

 for L=64 and
[image: image10.wmf](47,0,64,47,7,64)

 for L=128. P=2, 3, 8, 16 and 32 are used in these examples. Both figures show that B-IBPTC outperforms Rel’6 turbo coding especially for error floor. A better interleaver design leads a better error floor region performance. Separate block-wise encoding provides better free distance property. Especially for low block length, free distance influences performance significantly. The proposed design is very useful for control signalling.
[image: image11.jpg]Frame Error Rate

Block IBPTC

—»—L=128 P=32

0.014 Rel'6 Turbo Coding

1E-3 4

1E-4

1E-5 4

00

E/N, (cB)

Fig. 4: Frame error rate performance of various codeword lengths over AWGN channel.

[image: image12.jpg]Frame Error Rate

0.1 3--

0.01 4

1E-3 4

1E-4

1E-5

Block IBPTC
—=— | =32 P=2
—— =32

—&— =32
——L=32P=16
—wv—L=64 P=16
—%— =128 P=16
—»—L=128 P=32
Rel'6 Turbo Coding
—0— =64
—0—L=128
—4— =256
—C—L=512
—7—L=1024
—#— L=2048

-] —b—L=4096

1E-6

Fig. 5: Frame error rate performance of various codeword lengths over flat Rayleigh fading channel.

Table 3 [6]: New puncturing patterns for turbo code (“1”=keep, “0”=delete)
	Code Rate
	Puncturing vector

	1/2
	X = [1 1 1 0]
Y1 = [1 0 1 1]
Y2 = [0 1 0 1]

	2/3
	X = [1 1 1 0 1 1 1 0]
Y1 = [0 0 1 0 1 0 0 1]
Y2 = [0 0 1 0 1 0 0 1]

	3/4
	X = [1 1 1 1 1 0]
Y1 = [0 0 1 0 0 1]
Y2 = [0 0 1 0 0 0]

5.1.1 Various code rates

This part evaluates the performance over different code rates. Data length is 3200 bits. Double prime interleaver applied for B-IBTPC is
[image: image13.wmf](27,0,50,27,24,50)

 for L=100 and B-IBP period is 32. Log MAP algorithm is also applied. Code rate=1/2, 2/3, 3/4 are considered. For Rel’6 turbo coding, we apply both standard puncturing pattern and the new puncturing pattern shown in Table 2 [6]. For B-IBPTC, we apply the new puncturing pattern.
[image: image14.jpg]Frame Error Rate

0.14

0.01

1E-34

1E-4 4

B-IBPTC New Punc.
—8—R=1/2
—8—R=2/3

—*— R=3/4

Rel'6 TC Conv. Punc|
—8—R=1/2
—&—R=2/3

—%— R=3/4

Rel's TC New Punc.
—8—R=1/2
—e—R=2/3

—*— R=3/4

1E-5

Fig. 6: Frame error rate performance of various code rates over AWGN channel.

Joint B-IBPTC and the new puncturing pattern outperforms Rel’6 turbo coding significantly. Especially for code rate=3/4, it provides 0.2 dB and 1.3 dB performance gain at FER=10-2 and 10-4. Even for Rel’6 turbo coding applying the new puncturing pattern, B-IBPTC still slightly defeat Rel’ 6 turbo coding slightly due to interleaver design.

6 Future Compatibility
B-IBPTC supports the throughput requirement in the future. Enlarging network span and increasing APP decoders provide higher throughput and lower decoding latency. Ongoing technology can support 100Mbits@8 iterations by 8 APP decoders. If target rate increases to 400Mbits, expanding to 32 APP decoders is trivial. Our double prime interleaver also supports double rate memory fetching and writing and therefore a further doubling throughput to 800Mbps is also trivial. Our synthesized example has provided 1Gbps possibility. Future process can support faster clock rate and 2 or 4 Gbps are also trivial.
B-IBPTC is also a strong candidate of the channel coding for software defined radio (SDR). It is constructed by a fixed short length interleaver and inter-connected the interleavers by a B-IBP algorithm. B-IBP period is the only parameter for the B-IBP algorithm. These B-IBPI features support simplicity, regularity, flexibility, calculability and programmability. The decoder is composed of modules. A control unit determines decoding procedure by an embedded schedule. The schedule is also reprogrammable. Therefore the structural code suits for software based architecture.

7 Conclusions
In this contribution, we expose the capability of a novel turbo coding, B-IBPTC, for high throughput and low latency with a reasonable implementation complexity. B-IBPTC further supports the backward compatibility to Rel’6 turbo coding with the reuse of all the decoding modules, memory and network. The most spectacular function of B-IBPTC is the enormous number of code it can construct. Take a B-IBPTC with 16 inter-connected blocks as an example. It can construct 16! = 20,922,789,888,000 codes for one data. The abundant channel codes can be used for security or the service differentiation for MBMS without any excess hardware complexity. If the security function is attractive, I highly recommend applying this code to Rel’7.
B-IBPTC easily solves latency issue but Rel’6 turbo coding faces severe latency issue. Rel’6 turbo coding does not support parallel memory accessing and writing and faces severe decoding latency. If tail-biting encoding is applied as 3GPP TR 25.814 V1.0.2, contribution R1-060133 [11] indicates the encoding latency doubled. The latency issue is more stringent.
We do not need LDPC code. Low latency is the only reason to substitute Rel’6 turbo coding by LDPC code but B-IBPTC can simply achieve latency requirement. LDPC code can not support backward compatibility. Due to the amount of extrinsic information, LDPC requires larger memory which mainly dominates hardware cost or die size but B-IBPTC requires less. LDPC code requires complex routing network which occupies 20%-50% die size but B-IBPTC can apply existing low cost network with extreme less area (<1%). For large range of code rates and data lengths, LDPC code requires complex controls and matrix storages which may be more complex than processing nodes, but it is trivial for B-IBPTC. Besides, B-IBPTC encoder is much simpler than LDPC code and supports parallel encoding. B-IBPTC is a better choice for the L1 channel coding in LTE than LDPC code.
At last, we summarize the features of B-IBPTC:
1. Backward compatibility;
2. Security (physical layer encryption);
3. Parallel encoding/decoding (low encoding/decoding latency capability);
4. Simple interleaver supporting contention-free in memory access;
5. Less memory requirement compared to LDPC code;
6. Low network complexity while supporting parallel processing;
7. Flexible hardware architecture;
8. Simple control signalling for coding processor and memory.
9. Future compatibility
8 Reference
[1] TS 25.222 V3.1.1 multiplexing and channel coding (TDD), 3GPP TSG RAN WG1, Dec. 1999
[2] Y.-X. Zheng, Y. T. Su, “On inter-block permutation and turbo codes," in Proc. international Symp. Turbo Codes and Related Topics, Brest, France, Sep. 2003.
[3] R1-060513, UTRA release 6 turbo coding compatible high throughput architecture with low up-gradation cost, ITRI/CCL.
[4] R1-060021, E-UTRA FEC enhancement, Motorola.
[5] R1-060356, Uplink HARQ consideration, Samsung.
[6] R1-060130, Modify puncturing pattern to improve performance and iterations of release 6 turbo coding, HighDimension.

[7] R1-060874, Complexity comparison of LDPC codes and turbo codes, Intel, ITRI, LG, Mitsubishi, Motorola, Samsung, ZTE.

[8] Mansour, M.M.; Shanbhag N.R. "A 640-Mb/s 2048-Bit Programmable LDPC Decoder Chip", IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp. 684-698, Mar. 2006.
[9] R1-061132, Implementation complexity and power consumption concerns in channel coding, HighDimension.
[10] R1-061134, Security and service differentiation in MBMS from physical layer perspective, HighDimension.
[11] R1-060133, System performance impact of release 6 turbo coding tail-bits removal, HighDimension.
Contactor: Zheng Yan-Xiu

e-mail: zyx@highdimension.com.tw

PAGE
9

_1207555574.unknown

_1208039798.unknown

_1208039969.unknown

_1207555605.unknown

_1207590802.unknown

_1207555090.unknown

_1207555478.unknown

_1207554169.unknown

