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1. Introduction

     In this contribution, we propose the parity-check matrix construction of RC(Rate-Compatible)-LDPC codes to achieve better performance for wide range of code word length and code rate. We inform the parity-check matrix construction method which can support the code rate range from 1/5 to 4/5, the information length range from 500bits to 6000bits, and show the performance in this contribution. As the results of simulations, we could confirm that the RC-LDPC codes can achieve good performance for wide range of code word length and code rate. 
We believe that the RC-LDPC codes are feasible. So, we propose that the possibility of using LDPC codes for LTE system is studied as working assumption. 
We will show the performance comparison between RC-LDPC and Turbo codes under the practical decoding algorithm with parallel operation as mentioned in [3] at the next March RAN1 meeting.
2. Performance evaluation for low-rate with RC-LDPC codes 
We show the required average received Eb/N0 at the average BLER=10-2 according to information length for the RC-LDPC codes defined in section 3 using sum-product decoding algorithm in the figure 1. Figure 2, 3, and 4 shows the BER and BLER performance for the proposed RC-LDPC codes with code word length 570, 1476, and 6000, respectively. The proposed RC-LDPC codes can achieve good performance and be stable for wide range of code word length and code rate as shown in the figure 1, 2, 3, and 4.
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Figure 1. Required average received Eb/N0 at the average BLER of 10-2 according to information length(500-5000bits), RC-LDPC codes (R1-060236), code rate = 1/5, 1/3, 1/2, 2/3, 4/5, sum-product algorithm, iteration:50, AWGN.
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Figure 2. BER performance, Information length:570, dotted line:BLER, solid line: BER,  RC-LDPC codes (R1-060236), code rate = 1/5, 1/3, 1/2, 2/3, 4/5, sum-product algorithm, iteration:100, AWGN.
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Figure 3. BER performance, Information length:1476, dotted line:BLER, solid line: BER,  RC-LDPC codes (R1-060236), code rate = 1/5, 1/3, 1/2, 2/3, 4/5, sum-product algorithm, iteration:100, AWGN.
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Figure 4. BER performance, Information length:6000, dotted line:BLER, solid line: BER,  RC-LDPC codes (R1-060236), code rate = 1/5, 1/3, 1/2, 2/3, 4/5, sum-product algorithm, iteration:100, AWGN.
3. Basic Scheme of RC-LDPC codes 
　The changing points are as follows,

(1) The generation rule of quasi-cyclic matrix 
[image: image5.wmf]BL

H

.

   (2) The size and pattern of the masking matrix 
[image: image6.wmf]Z

.
  Other parts are the same as R1-051383. We explain the above changing points in the subsection 3.1.
3.1 Code structure and code description

 　In this subsection we explain the basic construction of the proposed RC-LDPC codes. Let 
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 be a prime number. The base parity-check matrix over 
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For example, 
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Let 
[image: image22.wmf]BL

H

 be a 
[image: image23.wmf](

)

M

N

M

-

´

 submatrix of left hand side of 
[image: image24.wmf]B

H

 such that

[image: image25.wmf](

)

(

)

(

)

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

-

-

-

-

-

-

1

,

1

1

,

1

0

,

1

1

,

1

1

,

1

0

,

1

1

,

0

1

,

0

0

,

0

)

(

)

(

)

(

)

(

)

(

)

(

:

L

J

J

J

L

L

BL

p

I

p

I

p

I

p

I

p

I

p

I

p

I

p

I

p

I

L

M

O

M

M

L

L

H

,

[image: image1.emf]0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

100100010000

information length (bit)

Required received Eb/N0 (dB) for achieving average

BLER = 10

-2

r = 4/5

r = 2/3

r = 1/2

r = 1/3

r = 1/5

where 
[image: image26.wmf]157

,

mod

)

mod

))

1

(

)

(((

,

0

,

=

+

×

-

=

A

A

l

A

l

j

p

p

p

j

p

p

p

 and for 
[image: image27.wmf]32

=

L

, 

[image: image28.wmf].

31

,

29

,

13

,

27

,

26

,

25

,

24

,

6

,

30

,

32

,

14

,

10

,

1

,

12

,

23

,

25

,

17

,

37

,

16

,

22

,

10

,

26

,

34

,

3

,

37

,

1

,

40

,

6

,

41

,

21

,

39

,

61

31

,

0

30

,

0

29

,

0

28

,

0

27

,

0

26

,

0

25

,

0

24

,

0

23

,

0

22

,

0

21

,

0

20

,

0

19

,

0

18

,

0

17

,

0

16

,

0

15

,

0

14

,

0

13

,

0

12

,

0

11

,

0

10

,

0

9

,

0

8

,

0

7

,

0

6

,

0

5

,

0

4

,

0

3

,

0

2

,

0

1

,

0

0

,

0

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p


The position indicated by the above rectangular is the changing point (1).
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This product defines a masking operation for which a set of permutation matrices in 
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H

 is masked by zero-entries of 
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. The distribution of the permutation matrices in 
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 is the same as the distribution of 1-entries of 
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.

Our proposed RC-LDPC code 
[image: image40.wmf]C

is defined as the null space of a parity-check matrix 
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Hence, we can give a parity check matrix 
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 for a LDPC code 
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by designing only a masking matrix 
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. 
As we can see, the information block size K = N-M and N is the code word block size. Through changing 
[image: image47.wmf]p

, a LDPC set of variable information length for various code rates can be obtained.
   The parity check matrix of LDPC codes can be fully described by only small parameters of 
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and 
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 is prepared a binary 128 x 32 matrix for all codeword length.
  The masking matrix 
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’s are designed to be avoided short cycles according to an appropriate degree distribution.

  We show an example of　a masking matrix 
[image: image52.wmf]Z

for equal to and more than code rate 1/5 as follows; 
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The position indicated by the above rectangular is the changing point (2).

Let 
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 be a parity check matrix
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The information block sizes of LDPC codes 
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 and overflow bits are padded 0’s.    
4. Conclusion
We proposed the parity-check matrix construction of RC-LDPC codes with lower code rate (1/5) capability from R1-051383 to achieve better performance for wide range of code word length and code rate. And we showed the simulation results for wide range of code word length at any code rates. We can confirm that the proposed RC-LDPC codes can achieve good performance and are very stable for wide range of code word length and code rate. So we believe that the proposed RC-LDPC codes become more feasible. Moreover, as mentioned in [1], RC-LDPC codes can easily achieve over 100 Mb/s throughput thanks to easy parallel operation and can achieve better than and equal to 3GPP turbo codes with respect to performance, memory size, complexity, and flexibility of code rate.
Therefore, the possibility of using LDPC codes for LTE system should be studied as working assumption. A text proposal is prepared in the contribution R1-060505[2]. 
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