3GPP TSG RAN WG1 Meeting #44
 R1- 060525
Denver, USA, 13 – 17 February, 2006

Source:
Mitsubishi Electric Corporation
Title:
Performance improvement of the rate-compatible LDPC codes.
Agenda Item:
13.2.2.4
Document for:
Discussion
1. Introduction

 In this contribution, we propose the parity-check matrix construction of RC(Rate-Compatible)-LDPC codes to achieve better performance for wide range of code word length and code rate. We inform the parity-check matrix construction method which can support the code rate range from 1/5 to 4/5, the information length range from 500bits to 6000bits, and show the performance in this contribution. As the results of simulations, we could confirm that the RC-LDPC codes can achieve good performance for wide range of code word length and code rate.
We believe that the RC-LDPC codes are feasible. So, we propose that the possibility of using LDPC codes for LTE system is studied as working assumption.
We will show the performance comparison between RC-LDPC and Turbo codes under the practical decoding algorithm with parallel operation as mentioned in [3] at the next March RAN1 meeting.
2. Performance evaluation for low-rate with RC-LDPC codes
We show the required average received Eb/N0 at the average BLER=10-2 according to information length for the RC-LDPC codes defined in section 3 using sum-product decoding algorithm in the figure 1. Figure 2, 3, and 4 shows the BER and BLER performance for the proposed RC-LDPC codes with code word length 570, 1476, and 6000, respectively. The proposed RC-LDPC codes can achieve good performance and be stable for wide range of code word length and code rate as shown in the figure 1, 2, 3, and 4.
[image: image67.emf]11000000000100001000000000001000

00101001000000000000010010000000

01010100000010100001000000000001

11000010000000000010000000001000

10101000000100000000101000000000

00011000001000000100000100000000

01001001000010001001000000000010

01100000000000000000000010001000

10010000100000010000000001000000

11011000000100001100000000000001

01100010000000100000000000000010

10010000000001000000010100000000

11000000100000001000100000100000

10100010000000000000000000000100

10011000000001010000000000000000

01010101000000000000101000000000

10100000010010000000000100010000

Z

A

=

10010000000000100000000001000000

01001100001000000001000000000100

10100000010000010000000000000001

00110000000000100000011000000000

11000000000001000010000000000010

00101000000000000100000001000000

10011000000000000001000100000000

01000000110100000000000000100000

10100001001000000010000000000000

00011000000001010000000000010000

11000000000010000000010000000100

10100010000000000100001010000000

00010000010000000000100000000000

01101001100010000000000000100000

00101100001000000010000000010000

Figure 1. Required average received Eb/N0 at the average BLER of 10-2 according to information length(500-5000bits), RC-LDPC codes (R1-060236), code rate = 1/5, 1/3, 1/2, 2/3, 4/5, sum-product algorithm, iteration:50, AWGN.

[image: image2.emf]k = 570, Sum-Product 100 iteration

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

-1-0.500.511.522.533.544.55

Eb/N0(dB)

Error Rate

rate 1/5

rate 1/5

Shannon Limit 1/5

rate 1/3

rate 1/3

Shannon Limit 1/3

rate 1/2

rate 1/2

Shannon Limit 1/2

rate 2/3

rate 2/3

Shannon Limit 2/3

rate 4/5

rate 4/5

Shannon Limit 4/5

Figure 2. BER performance, Information length:570, dotted line:BLER, solid line: BER, RC-LDPC codes (R1-060236), code rate = 1/5, 1/3, 1/2, 2/3, 4/5, sum-product algorithm, iteration:100, AWGN.
[image: image3.emf]k = 1476, Sum-Product 100 iteration

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

-1-0.500.511.522.533.544.55

 Eb/N0(dB)

Error Rate

rate 1/5

rate 1/5

Shannon Limit 1/5

rate 1/3

rate 1/3

Shannon Limit 1/3

rate 1/2

rate 1/2

Shannon Limit 1/2

rate 2/3

rate 2/3

Shannon Limit 2/3

rate 4/5

rate 4/5

Shannon Limit 4/5

Figure 3. BER performance, Information length:1476, dotted line:BLER, solid line: BER, RC-LDPC codes (R1-060236), code rate = 1/5, 1/3, 1/2, 2/3, 4/5, sum-product algorithm, iteration:100, AWGN.
[image: image4.emf]k = 6000, Sum-Product 100 iteration

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

-1-0.500.511.522.533.544.55

 Eb/N0(dB)

Error Rate

rate 1/5

rate 1/5

Shannon Limit 1/5

rate 1/3

rate 1/3

Shannon Limit 1/3

rate 1/2

rate 1/2

Shannon Limit 1/2

rate 2/3

rate 2/3

Shannon Limit 2/3

rate 4/5

rate 4/5

Shannon Limit 4/5

Figure 4. BER performance, Information length:6000, dotted line:BLER, solid line: BER, RC-LDPC codes (R1-060236), code rate = 1/5, 1/3, 1/2, 2/3, 4/5, sum-product algorithm, iteration:100, AWGN.
3. Basic Scheme of RC-LDPC codes
　The changing points are as follows,

(1) The generation rule of quasi-cyclic matrix
[image: image5.wmf]BL

H

.

 (2) The size and pattern of the masking matrix
[image: image6.wmf]Z

.
 Other parts are the same as R1-051383. We explain the above changing points in the subsection 3.1.
3.1 Code structure and code description

 　In this subsection we explain the basic construction of the proposed RC-LDPC codes. Let
[image: image7.wmf]p

 be a prime number. The base parity-check matrix over
[image: image8.wmf])

2

(

GF

 with LDGM (Low-Density Generation Matrix) structure is defined by a matrix
[image: image9.wmf]B

H

 of size
[image: image10.wmf])

(

)

(

pJ

pL

pJ

N

M

+

´

=

´

such that

[image: image11.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

-

-

-

-

-

-

-

-

-

-

)

0

(

)

0

(

)

(

)

(

)

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

(

)

(

)

(

)

0

(

)

0

(

)

(

)

(

)

(

)

0

(

)

(

)

(

)

(

:

1

,

1

2

,

1

0

,

1

1

,

1

4

/

2

,

1

4

/

0

,

1

4

/

1

,

1

2

,

1

0

,

1

1

,

0

1

,

0

0

,

0

I

I

p

I

p

I

p

I

I

I

I

I

I

I

p

I

p

I

p

I

I

I

p

I

p

I

p

I

I

p

I

p

I

p

I

L

J

J

J

L

J

J

J

L

L

B

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

H

L

L

L

O

O

O

O

O

O

M

M

M

M

M

M

O

O

O

M

M

M

M

M

O

L

M

M

M

M

M

O

O

O

M

L

M

O

O

O

O

O

O

M

M

M

M

M

O

O

O

O

L

L

L

L

L

L

L

, where for
[image: image12.wmf]1

0

,

1

0

-

£

£

-

£

£

L

l

J

j

,
[image: image13.wmf])

(

,

l

j

p

I

 represents the circulant permutation matrix with a one at column-
[image: image14.wmf])

1

(0

,

mod

)

(

,

-

£

£

+

p

r

p

p

r

l

j

for row-
[image: image15.wmf])

1

(0

,

-

£

£

p

r

r

, and zero elsewhere. It follows that
[image: image16.wmf])

0

(

I

represents the
[image: image17.wmf]p

p

´

identity matrix. And
[image: image18.wmf]

0

is zero matrices of size
[image: image19.wmf]p

p

´

.
For example,
[image: image20.wmf])

1

(

I

 is as follows,

[image: image21.wmf].

0

0

0

1

1

0

0

0

0

1

0

0

0

0

1

0

)

1

(

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

L

L

L

L

L

L

L

L

L

I

Let
[image: image22.wmf]BL

H

 be a
[image: image23.wmf](

)

M

N

M

-

´

 submatrix of left hand side of
[image: image24.wmf]B

H

 such that

[image: image25.wmf](

)

(

)

(

)

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

-

-

-

-

-

-

1

,

1

1

,

1

0

,

1

1

,

1

1

,

1

0

,

1

1

,

0

1

,

0

0

,

0

)

(

)

(

)

(

)

(

)

(

)

(

:

L

J

J

J

L

L

BL

p

I

p

I

p

I

p

I

p

I

p

I

p

I

p

I

p

I

L

M

O

M

M

L

L

H

,

[image: image1.emf]0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

100100010000

information length (bit)

Required received Eb/N0 (dB) for achieving average

BLER = 10

-2

r = 4/5

r = 2/3

r = 1/2

r = 1/3

r = 1/5

where
[image: image26.wmf]157

,

mod

)

mod

))

1

(

)

(((

,

0

,

=

+

×

-

=

A

A

l

A

l

j

p

p

p

j

p

p

p

 and for
[image: image27.wmf]32

=

L

,

[image: image28.wmf].

31

,

29

,

13

,

27

,

26

,

25

,

24

,

6

,

30

,

32

,

14

,

10

,

1

,

12

,

23

,

25

,

17

,

37

,

16

,

22

,

10

,

26

,

34

,

3

,

37

,

1

,

40

,

6

,

41

,

21

,

39

,

61

31

,

0

30

,

0

29

,

0

28

,

0

27

,

0

26

,

0

25

,

0

24

,

0

23

,

0

22

,

0

21

,

0

20

,

0

19

,

0

18

,

0

17

,

0

16

,

0

15

,

0

14

,

0

13

,

0

12

,

0

11

,

0

10

,

0

9

,

0

8

,

0

7

,

0

6

,

0

5

,

0

4

,

0

3

,

0

2

,

0

1

,

0

0

,

0

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

The position indicated by the above rectangular is the changing point (1).

And let [image: image29.wmf][

]

l

j

z

,

=

Z

be a
[image: image30.wmf]L

J

´

 over
[image: image31.wmf])

2

(

GF

. We define the following product of
[image: image32.wmf]Z

 and
[image: image33.wmf]BL

H

:

[image: image34.wmf](

)

(

)

(

)

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

Ä

=

-

-

-

-

-

-

-

-

-

-

-

-

1

,

1

1

,

1

1

,

1

1

,

1

0

,

1

0

,

1

1

,

1

1

,

1

1

,

1

1

,

1

0

,

1

0

,

1

1

,

0

1

,

0

1

,

0

1

,

0

0

,

0

0

,

0

)

(

)

(

)

(

)

(

)

(

)

(

L

J

L

J

J

J

J

J

L

L

L

L

BL

p

I

z

p

I

z

p

I

z

p

I

z

p

I

z

p

I

z

p

I

z

p

I

z

p

I

z

L

M

O

M

M

L

L

H

Z

M

,

where

[image: image35.wmf]î

í

ì

=

=

=

.

0

for

,

1

for

)

(

)

(

,

,

,

,

,

l

j

l

j

l

j

l

j

l

j

z

z

p

I

p

I

z

0

This product defines a masking operation for which a set of permutation matrices in
[image: image36.wmf]BL

H

 is masked by zero-entries of
[image: image37.wmf]Z

. The distribution of the permutation matrices in
[image: image38.wmf]M

 is the same as the distribution of 1-entries of
[image: image39.wmf]Z

.

Our proposed RC-LDPC code
[image: image40.wmf]C

is defined as the null space of a parity-check matrix
[image: image41.wmf]M

H

 such that:

[image: image42.wmf][

]

T

M

H

M

H

=

:

,
where

[image: image43.wmf].

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

:

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

I

I

I

I

I

I

I

I

I

I

I

T

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

H

L

L

O

O

O

O

O

O

M

M

O

O

O

M

O

L

M

O

O

O

M

M

O

O

O

O

O

O

M

O

O

O

O

L

L

L

L

L

Hence, we can give a parity check matrix
[image: image44.wmf]M

 for a LDPC code
[image: image45.wmf]C

by designing only a masking matrix
[image: image46.wmf]Z

.
As we can see, the information block size K = N-M and N is the code word block size. Through changing
[image: image47.wmf]p

, a LDPC set of variable information length for various code rates can be obtained.
 The parity check matrix of LDPC codes can be fully described by only small parameters of
[image: image48.wmf]Z

and
[image: image49.wmf]l

p

,

0

.
[image: image50.wmf]Z

 is prepared a binary 128 x 32 matrix for all codeword length.
 The masking matrix
[image: image51.wmf]Z

’s are designed to be avoided short cycles according to an appropriate degree distribution.

 We show an example of　a masking matrix
[image: image52.wmf]Z

for equal to and more than code rate 1/5 as follows;

[image: image53.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

´

´

´

17

32

17

32

17

32

18

:

9

,

32

:

1

3

:

1

,

32

:

1

5

:

4

,

32

:

1

17

:

8

,

32

:

1

2

:

1

,

32

:

1

5

:

3

,

32

:

1

16

:

7

,

32

:

1

1

,

32

:

1

5

:

2

,

32

:

1

0

Z

Z

Z

0

Z

Z

Z

0

Z

Z

Z

Z

Z

A

A

A

A

A

A

A

A

A

A

,
where

[image: image54]
,
[image: image55.wmf](

)

5

:

2

,

32

:

1

A

Z

 is a submatrix of
[image: image56.wmf]A

Z

 formed by from 1st row to 32nd row and from 2nd

column to 5th column, and
[image: image57.wmf]17

32

´

0

 is a 32 x 17 zero matrix.
The position indicated by the above rectangular is the changing point (2).

Let
[image: image58.wmf]M

H

 be a parity check matrix
[image: image59.wmf][

]

[

]

T

BL

T

M

H

H

Z

H

M

H

Ä

=

=

:

 for all code word length.

The information block sizes of LDPC codes
[image: image60.wmf]C

 is
[image: image61.wmf]p

p

L

K

´

=

´

=

32

, where each
[image: image62.wmf]p

 is prime number. If
[image: image63.wmf]K

 is not equal to the required information length,
[image: image64.wmf]p

 of
[image: image65.wmf]p

L

K

´

=

 is set at more than (the required information length)/
[image: image66.wmf]p

 and overflow bits are padded 0’s.
4. Conclusion
We proposed the parity-check matrix construction of RC-LDPC codes with lower code rate (1/5) capability from R1-051383 to achieve better performance for wide range of code word length and code rate. And we showed the simulation results for wide range of code word length at any code rates. We can confirm that the proposed RC-LDPC codes can achieve good performance and are very stable for wide range of code word length and code rate. So we believe that the proposed RC-LDPC codes become more feasible. Moreover, as mentioned in [1], RC-LDPC codes can easily achieve over 100 Mb/s throughput thanks to easy parallel operation and can achieve better than and equal to 3GPP turbo codes with respect to performance, memory size, complexity, and flexibility of code rate.
Therefore, the possibility of using LDPC codes for LTE system should be studied as working assumption. A text proposal is prepared in the contribution R1-060505[2].
Reference

[1] Mitsubishi Electric Corporation et al. “Rate-Compatible LDPC codes with low complexity encoder and decoder”, 3GPP TSG RAN WG1 #43 R1-051383 Soeul, Korea, Nov. 7th– Nov. 11th, 2005

[2] CATT, China Mobile, LG Electronics, Mitsubishi Electric Corperation, RITT, Huawei, ZTE, Motorola. “Text Proposal for Channel coding in E-UTRA”, 3GPP TSG RAN WG1 #44, R1-060505, Denver, USA, Feb. 13-17, 2006

[3] Mitsubishi Electric Corporation et al. “Comparison between Turbo and LDPC codes under the condition of parallel operation.”, 3GPP TSG RAN WG1 #44 R1-060526 Denver, USA, FEB. 13rd-17th, 2006
_1199129311.unknown

_1199129319.unknown

_1199129324.unknown

_1199129326.unknown

_1199186226.unknown

_1199191899.unknown

_1199186651.unknown

_1199129327.unknown

_1199129325.unknown

_1199129322.unknown

_1199129323.unknown

_1199129321.unknown

_1199129315.unknown

_1199129317.unknown

_1199129318.unknown

_1199129316.unknown

_1199129313.unknown

_1199129314.unknown

_1199129312.unknown

_1199129295.unknown

_1199129303.unknown

_1199129307.unknown

_1199129309.unknown

_1199129310.unknown

_1199129308.unknown

_1199129305.unknown

_1199129306.unknown

_1199129304.unknown

_1199129299.unknown

_1199129301.unknown

_1199129302.unknown

_1199129300.unknown

_1199129297.unknown

_1199129298.unknown

_1199129296.unknown

_1199129287.unknown

_1199129291.unknown

_1199129293.unknown

_1199129294.unknown

_1199129292.unknown

_1199129289.unknown

_1199129290.unknown

_1199129288.unknown

_1199129278.unknown

_1199129283.unknown

_1199129285.unknown

_1199129286.unknown

_1199129284.unknown

_1199129281.unknown

_1199129282.unknown

_1199129279.unknown

_1199129273.unknown

_1199129275.unknown

_1199129276.unknown

_1199129274.unknown

_1199129271.unknown

_1199129272.unknown

_1199129269.unknown

_1199129270.unknown

_1199129268.unknown

