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1 Introduction

In 3GPP RAN1 LTE ad-hoc meeting, R-OFDM with twin turbo decoder is discussed [1]-[2]. In order to clarify its impact on the receiver’s complexity, this contribution analyzes the amount of baseband signal processing on receiver sides. Four configurations are provided for comparison.

· Conventional OFDM with Normal Turbo decoder (NT)

· R-OFDM (Rotational-OFDM) with MMSEC (Minimum Mean Squared Error Combining) and NT
· R-OFDM with MLD (Maximum Likelihood Demodulator) and NT

· R-OFDM  with MDD (Multi-Dimensional Demodulator) and Twin Turbo decoder (T2)
The baseband signal processing consists of three major components on receiver side, which are channel estimator, the demodulator and the decoder. Each analysis is described in corresponding section in this contribution, as listed in Table 1.
Table 1 -   Receiver Configurations and Related Sections for Baseband Component
	Component
Configurations
	Channel Estimator
	Demodulator
	Decoder

	OFDM + NT
	§ 2
	§ 3
	§ 7

	R-OFDM + MMSEC + NT
	§ 2
	§ 4
	§ 7

	R-OFDM + MLD + NT
	§ 2
	§ 5
	§ 7

	R-OFDM + MDD + T2
	§ 2
	§ 6
	§ 8


The complex conjugate operation is neglected due to the sign converting on imaginary number. This contribution uses following parameters.
· 
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Number of information bits per packet
· 
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Coding rate (Larger than or equal to 1/3)
· 
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Number of bits per modulation symbol
· 
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Number of data sub-carriers
· 
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Rotation Dimension (=1 for conventional OFDM)
· 
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Number of spreading bandwidth
· 
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Number of bits in one rotation symbol
· 
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Number of states in Turbo code (= 2K-1 where K is constraint length)
· 
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Number of iteration in Turbo decoding
Note that the complex multiplication is divided into 2 additions and 4 real multiplications, and an absolution of a complex number is 1 addition and 2 real multiplications. Complex conjugate does not count since it is just a sign bit reverse.
2 Channel Estimator
The system model of channel estimation is shown in Fig. 1. 
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Fig.1 System Model of Channel Estimation

2.1 FFT

The computation of 
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 complex multiplications. In case of 1024 subcarriers/OFDM symbols, the computation of FFT includes
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[Multiplication]
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2.2 Channel estimation

The received pilot signal 
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 is multiplied to the complex conjugate value of the transmitting pilot signal 
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 like follows.
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In (1) the computation includes 2 additions and 4 multiplications. In case of 600 pilot subcarriers, the computation of channel estimation includes

[Addition]
1,200

[Multiplication]
2,400

3 Demodulator for OFDM
The system model of OFDM is shown in Fig. 2.
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Fig. 2 System Model of OFDM
3.1 FFT

In a short CP format, 6 data OFDM symbols are multiplexed in each sub-frame. The computation of the FFT data symbols includes

[Addition]
184,320

[Multiplication]
122,880
3.2 Fading Compensator

The amplitude change and the phase rotation are compensated by the fading factors. The fading factors are compensated as follows.
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In (2) the computation includes 1 addition and 2 multiplications. In (3) the computation includes 0 addition and 2 multiplications. In (4) the computation includes 2 additions and 4 multiplications. For 
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 repeating calculations, the computation of the Phase Rotation Compensator includes
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3.3 Channel Reliability Calculator

The channel reliability values are calculated based on following 3 procedures.

· Calculating square distance

· Calculating log-likelihood ratio （TTD case）

· Calculating log-likelihood ratio （TD case）

3.3.1 Calculating Square Distance

The square distance is calculated from each base signal point. For each base signal point, the computation includes 3 additions and 2 multiplications. The calculation is repeated with the number of base signal points (2^
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 numbers. The computation of the square distance includes

[Addition]
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3.3.2 Calculating Symbol Likelihood（T2 Case）

In TTD, the symbol likelihood is obtained by dividing the square distance with the signal power. The computation of the symbol likelihood includes
[Addition]
0

[Multiplication]
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3.3.3 Calculating Symbol Likelihood（NT Case）

In the turbo codes, the log-likelihood ratio is obtained from square distance.
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Because the above calculation is repeated only with the number of coded bits, the computation of log-likelihood ratio includes

[Addition]

[image: image36.wmf](/2)(/2)

(2(2/21)1)(/)(21)(/)

MODMOD

NN

infoinfo

NRNR

´-+´=-´


[Multiplication]
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4 Demodulator for R-OFDM with MMSEC

The system model of R-OFDM & MMSEC is shown in Fig. 3.
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Fig. 3 System Model of R-OFDM & MMSEC

4.1 FFT

Refer to section 3.1.

4.2 MMSE Equalizer

The weight of MMSE is shown below.
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In (7) the computation includes 2 additions and 4 multiplications. Moreover, in (8) the computation includes 2 additions and 4 multiplications. Consequently the computation for each subcarrier includes 4 additions and 8 multiplications. Based on the number of subcarriers, the computation includes

[Addition] 
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4.3 De-Spreader

Because the computation in the spreading bandwidth range is the integral calculus with a multiplication of the 
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 repeating calculations, the computation of the De-Spreader includes
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4.4 De-Modulator

The demodulation includes following 3 procedures.

· Calculating signal amplitude
· Calculating noise power

· Calculating interference power

4.4.1 Calculating Signal Amplitudes

After MMSEC, the signal amplitudes are calculated as follows.
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Where,
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In (9) the computation includes 2 additions and 7 multiplications. 
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 calculations are operated in each spreading bandwidth range for the purpose of the integral calculus with (10). 
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 numbers. The computation of the signal amplitudes includes
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4.4.2 Calculating Noise Power

After MMSEC, the noise power is calculated as follows.
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Where (12) is considered. In 
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 the computation includes 1 addition and 4 multiplications. 
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 additions are adopted because 
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 calculations are operated in each spreading bandwidth range for purpose of the integral calculus. 
[image: image63.wmf]m

 includes 
[image: image64.wmf]d

N

 numbers. The computation of the noise power includes

[Addition]
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4.4.3 Calculating Interference Power

After MMSEC, the interference power is calculated as follows.
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Where (13) is considered. In right 
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 calculations are operated in each spreading bandwidth range for purpose of the integral calculus. In left 
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 calculations are operated in each spreading bandwidth range for purpose of the integral calculus. 
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 numbers. The computation of the interference power includes

[Addition]
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[Multiplication]
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4.5 Channel Reliability Calculator

The channel values are calculated based on following 2 procedures.

· Calculating square distance

· Calculating log-likelihood ratio

4.5.1 Calculating Square Distance

The square distance is calculated from each base signal point. The square distance is obtained by multiplying 
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 to the base signal point. For each base signal point, the computation includes 3 additions and 4 multiplications. The calculation is repeated with the number of the base signal points (2^
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 numbers. The computation of the square distance includes
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4.5.2 Calculating Log-Likelihood Ratio

Based on following equation, the log-likelihood ratio is obtained from the symbol likelihood.
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Because the above calculation is repeated only with the number of the coded bits, the computation of the log-likelihood ratio includes

[Addition]
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[Multiplication]
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5 Demodulator for R-OFDM with MLD

The system model of R-OFDM & MLD is shown in Fig. 4.
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Fig. 4 System Model of R-OFDM & MLD
5.1 FFT

Refer to section 3.1.

5.2 Phase Rotation Compensator

Refer to section 3.2.

5.3 MLD

MLD includes following 3 procedures.

· Generating base signal points

· Calculating signal likelihood

· Calculating log-likelihood ratio

5.3.1 Generating Base Signal Points

Refer to section 3.3.1.

5.3.2 Calculating Signal Likelihood

Refer to section 3.3.2.

5.3.3 Calculating Log-Likelihood Ratio

Based on following equation, the log-likelihood ratio is obtained from the symbol likelihood.
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Because the above calculation is repeated only with the number of the coded bits, the computation of log-likelihood ratio includes
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[Multiplication]
0
6 Demodulator for R-OFDM with MDD

The system model of R-OFDM & MDD is shown in Fig. 5.
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Fig. 5 System Model of R-OFDM & MDD
6.1 FFT

Refer to section 3.1.
6.2 Phase Rotation Compensator

The phase rotation is compensated by the fading factors. The phase rotation is compensated as follows.
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The computations are as follows: 1 addition and 2 multiplications in (17), 0 addition and 2 multiplications in (18), and 2 additions and 4 multiplications in (19). In case of 
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 repeating calculations, the computation of Phase Rotation Compensator includes

[Addition]

[image: image100.wmf]3

d

N

´


[Multiplication]

[image: image101.wmf]8

d

N

´


6.3 MDD

MDD includes following 2 procedures:

· Generating base signal points

· Calculating symbol likelihood

6.3.1 Generating Base Signal Points
There are 
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 base signal points in both I and Q components, and each base signal point expresses 
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 values. In this material, base signal point is defined as 
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）. Because the phase rotation of the received signals is compensated by the Phase Rotation Compensator, base signal point is updated by multiplying the signal point to the channel gain.
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Where it is 
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6.3.2 Calculating Symbol Likelihood

The symbol likelihood is calculated from the square distance that is calculated from the by MDD transformed received signal points 
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The calculation inside 
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 includes 1 addition and 2 multiplications. 
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 additions are adopted because 
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 calculations are operated in each spreading bandwidth range for purpose of the integral calculus. 
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 numbers. Because 2 received signal points of I and Q components are obtained from a spreading bandwidth range, the computation of the symbol likelihood includes

[Addition]
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[Multiplication]
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7 Normal Turbo decoder (NT)

Refer to section 8.2.
8 Twin Turbo decoder (T2)

T2 includes mainly following 3 procedures.

· Calculating channel values

· NT

· Calculating a posteriori values of parity bits

Because there is no multiplying calculation in T2, in the following, only addition operation is considered.

8.1 Calculating Channel Values

Channel values are calculated by following 2 procedures.

· Addition of a posteriori values of pair bits

· Calculating log-likelihood ratio

8.1.1 Addition of a Posteriori Values of Pair Bits

The a posteriori values of the pair bits are added to the symbol likelihood values. There are 
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 pair bits, and the number of the pair bits that are obtained from the a posteriori values of the previous decoder is as follows.
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Moreover, for a bit with a value of either 0 or 1, same value can be achieved. For each symbol likelihood value, the number of the additions for a bit is
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For each bit, there are 
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 bits. By the condition that no operation is processed by the previous decoder before the initial iteration, the computation of the a posteriori values of the pair bits includes
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    : R-OFDM

In OFDM with 
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     : OFDM

8.1.2 Calculating Log-Likelihood Ratio

In T2, because the log-likelihood ratio values are calculated only by 2 X number of iterations, it is enough to consider only the input bits to the component decoder.

[Addition]
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     : R-OFDM

[Addition]
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     : OFDM

（Refer to section 5.3.3 for details.）

8.2 NT

NT is includes following 2 procedures. The explanation is based on rate 1/3 turbo decoding.

· Calculating 
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· Calculating 
[image: image134.wmf]A


· Calculating 
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· Calculating 
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· Calculating extrinsic values

8.2.1 Calculating 
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The a priori values of the information bits are added to the channel values of the information and the parity bits (2 additions). Because 1/2 of them can be achieved by bit –shift, it is not counted to the computational complexity. 
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 is calculated by the operation as number of states X number of turbo iterations X 2 for an information bit. The computation of 
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8.2.2 Calculating 
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The calculation is the addition of
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, which is the value just before the current value, with 
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 and the selection of the maximum values. There are 2 additions for a branch. Because 2 branches are combined to a state, the computation of 
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8.2.3 Calculating 
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The calculation is the addition of two values of 
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, which are the values following the current value, with 
[image: image148.wmf]G

 and the selection of the maximum values. There are 3 additions for a branch. The computation of 
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8.2.4 Calculating 
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・Addition of 
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・Selection of maximum values between 
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・Calculating LLR（addition, information bit）
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Consequently the computation of 
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8.2.5 Calculating Extrinsic Values

The channel values and the a priori values are subtracted from the a posteriori values (2 additions). By the condition that no operation of calculating the extrinsic values is processed by the latter decoder in the last iteration, the calculation is shown as number of turbo iteration X 2 - 1 for an information bit. The computation of the extrinsic values includes

[Addition]
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8.3 Calculating a Posteriori Values of Parity Bits

The a posteriori values of the parity bits are calculated with the same method explained in section 8.2.4. The number of the parity bits is
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. By the condition that no operation of calculating the a posteriori values of the parity bits is processed by the latter decoder in the last iteration, the computation includes 
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9 Complexity Comparison
Based on section 2 to 8, total computational complexity of OFDM w/ NT, OFDM w/ T2, R-OFDM & MLD w/ NT, R-OFDM & MDD w/ T2, R-OFDM & MMSEC w/ NT is explained. In this investigation, complexity calculations were conducted by using the working assumptions for 10 MHz downlink parameters discussed in LTE. The calculation costs for Addition and Multiplication were assumed to be 1:10 [3]. Table 2 summarizes the normalized total complexity of OFDM w/ NT, where dash (-) means more than 200%.
Table 2 Total Computational Complexity for all Transmission Systems, Demodulation・Decoding（ Normalized Complexity for OFDM w/ NT）
[image: image164.emf]OFDM
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10 Conclusion

This contribution presents the complexity comparison between normal OFDM with turbo decoder and R-OFDM with several types of demodulators, based on brute force way. From the complexity comparison results, R-OFDM & MDD with T2 will less impact on the conventional OFDM with NT as higher the coding rate is.
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