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1
Introduction

It was decided in [1] that the baseline antenna configuration for MIMO is two transmit antennas at the cell site and two receive antennas at the UE. The possibility for higher-order downlink MIMO (more than two TX/RX antennas) should also be considered.

In this contribution, we evaluated the OFDMA performances of MIMO configurations. Our main focus is on [2Tx, 2Rx], [4Tx, 1Rx], and [4Tx, 2Rx]. 
2 MIMO OFDMA configurations
Of the three antenna configurations [2Tx, 2Rx], [4Tx, 1Rx], and [4Tx, 2Rx], different MIMO techniques may be needed to achieve desirable performance. For instance, while a rate-1 orthogonal STBC exist for two transmit antennas, there is no such a code exists for systems with more than two transmit antennas. In addition, more receive antennas are required for spatial multiplexing (SM) than for transmit diversity. For this reason, different space-time techniques are needed for different antenna configuration; and following this logic, we present our results according to antenna configurations.
2.1
MIMO of [2Tx, 2Rx]
With a [2Tx, 2Rx], there are two possible MIMO modes being used, namely STTD and SM. While STTD improves the link reliability, SM increases the link throughput. One weakness of SM, however, is its sensitiveness regarding the condition of the channel matrix, which in turn shows the orthogonality between the multiplexed layers. When the channels of the layers are orthogonal, no processing SNR loss will occur at the receiver side; otherwise, large processing SNR loss will occur. Since STTD is orthogonally coded, no processing SNR loss will occur at the receiver, regardless of the condition of the channel matrix. Hence we may conclude that SM is more suitable for the cases where SNR is high and the condition of the channel matrix is robust, while STTD is more suitable for the cases where SNR is low and/or the condition of the channel matrix is weak.

From this understanding, the BTS may use 1 bit in the signalling channel to instruct the UE about which mode to use according to the channel condition it sees. If the channel changes fast, the BTS may just instruct the UE to use STTD; otherwise, the BTS will select a mode according to the SNR and condition of the channel matrix it observed.

For a [2Tx, 2Rx] system defined by channel matrix
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The kind of channel matrix which allows an SM system to achieve its maximum capacity is the one that maximizes
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, this condition can be translated into the following relations [2]:
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Equation (2) indicates that the two layers have equal signal strength, and equation (3) indicates that the channel vectors of the two layers are orthogonal to each other. When this condition is satisfied, this [2Tx, 2Rx] is dissolved into two [1Tx, 1Rx] systems, with channel attenuation factors being 
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, respectively. Note that these are two parallel single layer systems with receive diversity order of 2.
In measuring the robustness of the channel, we need to normalize it with the average channel attenuation values. In our investigation, we use
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where 
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 is the number of transmit antennas. Note that 
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 provides the robustness of the channel matrix, but not SNR. Here we separate the matrix condition from SNR, because when SNR is large whether an SM mode is used is mainly determined by the matrix condition. For a system with high SNR but weak matrix condition, even though 
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 is not too small, the BTS may still opt for STTD mode instead, as STTD with higher QAM and FEC code rates is more favourable than SM in this case. Note that since
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Since 
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 may change from sub-band to sub-band, it is clear that adaptive mode selection is more effective for sub-band channels than for diversity channels. In addition, for sub-band channels, we only need to compute one
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; while for diversity channels, we need to compute an average 
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 across the bandwidth. The potential benefit of [2Tx, 2Rx] MIMO mode adaptation is shown in Figure 1.
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Figure 1 MIMO mode adaptation for [2Tx, 2Rx]

2.2
MIMO of [4Tx, 1Rx]
The best known STBC code was proposed by Alamouti for 2 transmit antennas in 1998 [2], where the code matrix is presented as

Table 1 The Alamouti code
	
	Antenna 1
	Antenna 2

	Time 
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This code has several properties, which makes it perfect for space diversity:

· The signals are orthogonal; hence full diversity is achieved at the receiver side.

· The transmit power is balanced between the two antennas (and the two time slots); hence low cost power amplifier can be used, which in turn reduces the modem cost.

· Its code rate is 1; hence no throughput is sacrificed.

· Its maximum likelihood decoder is very simple, which makes the cost of an optimal decoder negligible.

Unfortunately, it was proven later that there are no such orthogonal codes existing for a system with more than two transmitter antennas. Therefore, the focus was shifted to the following two areas:

· Design orthogonal STBC codes with code rate smaller than 1; and

· Design quasi-orthogonal STBC codes to maintain the property of code rate 1.

While the first approach sacrifices the system throughput, the second approach sacrifices the signal quality due to the loss of orthogonality.

There are several variations of the codes falling into the above categories, with focuses on other areas such as power balancing and code rate manipulation; but no codes with the beauty of the Alamouti could be ever found.
Typical STBC codes for 4 transmit antennas

1. Code rate 
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 orthogonal code (R3/4OC)
This code strives to maintain the orthogonality of the codes, thereby the diversity order and signal quality. The code matrix is given by

Table 2 Code rate 3/4 orthogonal code
	
	Antenna 
	Antenna 2
	Antenna 3
	Antenna 4

	Time 
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With this code, each received signal has a diversity order is 4. However, one weakness of this code is its code rate loss, which must be compensated in FEC codes. In other words, due to the rate loss in STBC, the code rate in FEC must be higher. This can cause problem for those powerful trellis codes at higher code rate, whose coding gain loss becomes significant when punctuation becomes excessive. Note that this code does not achieve full power balance across transmit antennas. There are other codes available which is able to overcome this weakness.

2. Code rate 1 non orthogonal code (R1NOC)
This code strives to maintain the throughput of the system; thereby no coding gain will be lost at the FEC stage. The code matrix is given by

Table 3 Code rate 1 non orthogonal code

	
	Antenna 1
	Antenna 2
	Antenna 3
	Antenna 4

	Time 
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Since this is no longer an orthogonal code, its determinant suffers from mutual interference. Defining the equivalent channel matrix 
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then
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where 
[image: image77.wmf][

]

T

r

r

r

r

r

*

4

3

*

2

1

=

v

, and 
[image: image78.wmf][

]

T

s

s

s

s

s

4

3

2

1

=

v

. The determinant of 
[image: image79.wmf]Q

 is given by


[image: image80.wmf]2

2

B

A

Q

-

=

,
(7)

where 
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 represents the loss due to the loss of orthogonality. Since 
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Code Rate 1 STBC for 4 Transmit Antennas with OFDM Application (R1OC)
To overcome the innate weakness of the above two kinds of codes, for OFDM application, we propose a new STTD approach. This approach exploits the properties of OFDM and FEC codes to maintain the advantages of Alamouti codes. Furthermore, it can be easily extended to systems with more than four antennas.

One property of FEC codes is their diversity effect within the code block [3]. With this knowledge, we can relax the diversity order on each QAM symbol to within one code block. Note that the difficulty of code rate 1 orthogonal STBC code design is to achieve full diversity per QAM symbol, so we may just design STBC codes which provide diversity order of two per QAM symbol, while still achieving full diversity with the help of FEC codes. With this in mind, the new approach can be presented in a way as

Table 4 the code rate 1 orthogonal STBC codes for OFDM application


	
	Antenna 1
	Antenna 2
	Antenna 3
	Antenna 4

	Time 
[image: image85.wmf]t


	
[image: image86.wmf]1

s


	
[image: image87.wmf]2

s


	0
	0

	Time 
[image: image88.wmf](

)

T

t

+


	
[image: image89.wmf]*

2

s

-


	
[image: image90.wmf]*

1

s


	0
	0

	Time 
[image: image91.wmf](

)

T

t

2

+


	0
	0
	
[image: image92.wmf]3

s


	
[image: image93.wmf]4

s



	Time 
[image: image94.wmf](

)

T

t

3

+


	0
	0
	
[image: image95.wmf]*

4

s

-


	
[image: image96.wmf]*

3

s




With Alamouti codes hopping across the transmit antennas, each QAM symbol has a diversity order of 2; however, with FEC coding being applied across all the STBC blocks, full diversity order is achieved. The STBC code rate is one, and each STBC code block is orthogonal.

One question left is power imbalance. From Table 4, it can be noticed that at each instant only two transmitters are transmitting, which means for a constant power of
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, each power amplifier (PA) must be designed to have 3 dB more dynamic range than when power balanced codes are used. Here the property of OFDM comes in nicely to help us eliminate that problem.

An OFDM signal has multiple sub-carriers, with each sub-carrier being treated as a flat fading channel. After IFFT, the energy of each sub-carrier is superimposed in the time domain, which is then amplified by a PA. Although for sub-carrier
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, at the same time, only antenna 3 and 4 are used for transmission. In other words, when looked from the time domain, all the antennas are transmitting simultaneously, but for different sub-carriers. Thus the average transmitting power per antenna is in fact balanced. This concept is illustrated in the following figure
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Figure 1 Power balance in an OFDM application
An additional advantage
One basic assumption of STBC is that the channel does not change from one transmission to the next transmission. For the prior arts, each QAM symbol is transmitted four times, and this can cause performance loss in the case of mobility, where the basic assumption becomes less and less true. Obviously, the longer the time (or frequency) elapses between the first and the last transmission, the more loss will result in. The new codes are well suited for this case, for each QAM symbol is only transmitted twice, consecutively.

It is straightforward to extend this approach for the STFTD (space-time-frequency transmit diversity), as shown in Table 5. The advantage of STFTD is that the received signal is decoded every two OFDM symbols instead of four.
Table 5 STFTD for 4 transmit antennas

	
	Antenna 1
	Antenna 2
	Antenna 3
	Antenna 4

	Time 
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The performance comparison of [4Tx, 1Rx] antenna configuration with respect of 3 types of transmission matrixes is shown in Figure 2. These transmission matrixes are:

· R3/4OC ( Code rate 
[image: image119.wmf]4
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 octogonal code

· R1NOC ( Code rate 1 non orthogonal code

· R1OC ( Code Rate 1 STBC for OFDM 4 Transmit 
As we can see R1OC achieves the best performance with simplest decoding complexity.
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Figure 2 Comparison of [4Tx,1Rx] transmission matrixes
2.3
MIMO of [4Tx, 2Rx]
In double STTD, two independent data streams are transmitted simultaneously from four transmit antennas, with each data stream being encoded with Alamouti codes. An example of double STTD is given in Table 6.

Table 6 Double STTD 1
	
	Antenna 1
	Antenna 2
	Antenna 3
	Antenna 4

	Time 
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Obviously, a double STTD system requires at least two receive antennas for proper signal detection. The system defined in Table 6 can be described by
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where 
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 denotes the signal received at the 
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th transmission on the 
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th receive antenna.
If we select another realization of double STTD as in Table 7, then the equivalent system can be described as
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Table 7 Double STTD 2
	
	Antenna 1
	Antenna 2
	Antenna 3
	Antenna 4

	Time 
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If we define
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and
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we can see that they are independent of each other, which mean we cannot obtain one from the other though simple row (or column) manipulation.
Dynamic antenna grouping

The reason of dynamic antenna grouping is based on the fact that interferences exist only between the Alamouti codes, but not within individual Alamouti codes. For this reason, by grouping antennas we may reduce inter-code interferences.

Another reason for antenna grouping is that by doing so we may achieve more balanced SNR distribution between the two independent data streams. The more balanced the SNRs are, the higher the system capacity is.

With four transmit antennas, there are total three ways of antenna, namely 
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; therefore, the required feedback signal would be a grouping index, indicating one of the possible three combinations.

The easiest way to determine the best grouping is to calculate the determinants of the equivalent channel matrixes 
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. In addition to the two defined by equations (10) and (11), we have the 3rd possible combination defined by Table 8
Table 8 Double STTD 3
	
	Antenna 1
	Antenna 2
	Antenna 3
	Antenna 4

	Time 
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which has the equivalent channel matrix given by equation (12)
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The grouping with the maximum 
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 provides the optimum performance.

Figure 2 presents an example of antenna grouping in one OFDM symbol. It shows that some down fades (in the frequency domain) due to channel correlation are eliminated, and the after processing SNR of antenna grouping is higher or equal to the fixed-grouping double STTD case. 
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Figure 2 D-STTD with and without antenna grouping (per sub-carrier)
It is noticed that when the speed of UE increases, the gain of antenna grouping decreases. In the worst case, however, the performance of antenna grouping equals to that without antenna grouping, and this provides an additional layer of protection.
The performance comparison of [4Tx, 2Rx] antenna configuration with respect of 2 types of transmission matrixes is shown in Figure 4. These transmission matrixes are:

· Fixed AG ( open loop fixed antenna transmit matrix (one of the double STTD matrixes listed in Table 6/7/8)

· Dynamic AG ( Closed loop dynamic antenna grouping of Alamouti pairs 
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 with feedback to indicate which matrix is the best. 

As we can see dynamic antenna grouping provide better gain in the slow mobility case with minimum matrix index feedback information. 
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Figure 4 Comparison of open loop and closed loop 4x2 MIMO transmission schemes 
3
Conclusions
In this contribution, we investigated three DL MIMO schemes, namely adaptive STC, rate-1 STTD for four transmit antennas, and antenna grouping. They (adaptive STC and antenna grouping) require very simple feedback. By exploiting the most suitable MIMO mode (adaptive STC), minimizing inter-code interference (antenna grouping), and employing Alamouti codes for four transmit antennas (rate-1 STTD), we are able to adapt the transmission scheme to the channel and achieve improved robustness and throughput of a MIMO system.
The antenna configurations discussed in this contribution is summarized in Table 9.

Table 9 Antenna configurations and MIMO proposals
	MIMO proposals
	Adaptive MIMO
	Rate-1 STTD
	Antenna grouping

	No. of transmit antennas
	2
	4
	4

	Minimum No. of receive anteanns
	2
	1
	2
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The throughput  in SM mode increases with metric for a given SNR.


This indicates a potential gain for adaptive MIMO based on short-term statistics.
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