3GPP TSG-RAN-1 Meeting #34
R1-031085
October 6-10, 2003
Seoul, Korea
Title:
Complexity Comparison of OFDM HS-DSCH Receivers and Advanced Receivers for HSDPA and Associated Text Proposal
Source:
Nortel Networks

Document for:
Information and discussion

1 Executive Summary

This document and the associated text proposal (at the end of the document) compare the complexity at the UE receiver of an OFDM HSDPA (as studied in [1]) and two forms of advanced WCDMA receivers for HSDPA: the G-RAKE and the MMSE equalizer. The complexity of a RAKE receiver is also presented in order to put the numbers into context. The analysis shows that OFDM is much lower in complexity than a RAKE, G-RAKE, or MMSE equalizer, when the parameters are set such that the receivers yield a similar symbol rate (15 codes in HSDPA gives a symbol rate of 3.6 Msym/sec, while 705 useful data subcarriers for OFDM parameter set 2 gives a symbol rate of about 3.8 Msym/sec, assuming 10% signalling/pilot overhead). The table and graph below summarize the relative cost of the different receivers. The RAKE, G-RAKE, and MMSE are respectively 1.4, 2.4, and 6.1 times more complex than an OFDM receiver. In fact, the complexity of an OFDM receiver is only 1.6 times larger than that of a RAKE receiver for a single SF=128 Release ’99 channel, despite the fact it supports a symbol rate that is more than 100 times larger.

	Receiver
	Cost (million per second)

	RAKE for R’99 DCH
	 791.3

	OFDM HSDPA
	1268.3

	RAKE for HSDPA (15 codes)
	1789.4

	G-RAKE for HSDPA (15 codes)
	3078.0

	MMSE for HSDPA (15 codes)
	7764.3

Cost Comparison of Different Receivers
[image: image1.emf]Receiver Complexity Comparison

0

1000

2000

3000

4000

5000

6000

7000

8000

RAKE for

R'99 DCH

OFDM

HSDPA

RAKE for

HSDPA (15

codes)

G-RAKE for

HSDPA (15

codes)

MMSE for

HSDPA (15

codes)

Receiver Type

Cost

(millions per sec

ond)

Receiver Complexity Comparison
2 Introduction and Overview

This document compares the complexity at the UE receiver of OFDM and 2 forms of advanced receivers for HSDPA: the G-RAKE and the MMSE equalizer. The complete analysis is followed by a text proposal.

There are many possible forms of advanced receivers for HSDPA but the G-RAKE and MMSE are two of the most promising techniques and so they are the ones studied here. The complexity of a RAKE receiver will also be presented to put the numbers in context. It is well known that the RAKE offers very poor performance under HSDPA multi-code scenarios for multi-path channels, but its complexity is presented here to put the complexity estimates of the other receivers in context. A RAKE receiver for a Release ’99 single data channel with SF=128 will also be assessed to further provide a basis for understanding the relative complexity increase to move to the more complex multi-code RAKE and the advanced multi-code receivers.

The analysis will only focus on a single Tx antenna, single Rx antenna situation. The RAKE, G-RAKE, and MMSE equalizer are receiving a multi-code HSDPA signal. The OFDM and HSDPA parameters are set such that they offer a similar bit rate. Specifically, the assumption will be that 15 codes are in use for HSDPA delivering 3.6 Msymbols/second. For OFDM, parameter set 1 (defined in [1]) with 299 useful sub-carriers operating at 13500 OFDM symbols/second yields 3.6 Msymbols/second, assuming 10% signalling/pilot overhead. Similarly, parameter set 2 with 705 useful sub-carriers and 12 OFDM symbols per 2 ms TTI and 10% of signalling/pilot overhead gives 3.8 Msymbols/second.

The analysis will only cover those aspects of the receiver that are not common with the other receiver types. In other words, the analysis will not include any symbol-rate functionality beyond the combining. Also excluded from the estimates are: (a) delay estimation (searching and finger tracking), (b) channel estimation, (c) finger assignment, and (d) code generation. These functions are not a dominant part of the complexity and, in the case of delay and channel estimation, they are similar in nature and should have comparable relative complexities in each of the receivers. The complexity of the receiver is dominated by the functionality covered within this document – the despreading, equalization, filtering, FFT, etc. Note it is assumed that all receivers are using the same RF front-end and CCTrCH processing back-end, including OFDM.

Each operation (addition, multiplication, etc.) will be assigned a relative cost and the total complexity will be quoted based on this cost. The cost referred to here depends on the implementation platform but as a cross-platform measure it generally corresponds to the power required to perform the operation. Table 1 gives the relative cost per operation type (operating on real operands). Real additions are given the baseline cost of 1 and all other operations are relative to this. Bit shifts that are fixed are assumed to be of 0 cost, as are table lookup operations. Table 1 refers to QMAC operations. A QMAC (short for QPSK Multiply and Accumulate) is the multiplication of a complex data sample with a complex code value (±1±j) and the accumulation of the complex results. A QMAC is considered to be equivalent in cost to 2 real additions.

	Operation
	Relative Cost

	Addition
	1

	Multiply
	10

	Division
	40

	Square Root
	50

	QMAC
	2

Table 1: Relative Cost per Operation
The rest of the document is organized as follows. First, the complexity of an OFDM system is presented. This is followed by the complexity analysis for: (1) a conventional RAKE for HSDPA, (2) a conventional RAKE for a single Release ’99 data channel, (3) a G-RAKE, and (4) a MMSE equalizer. The complexity of OFDM is then compared to that of the W-CDMA receivers. A further section gives additional estimates of the complexity of W-CDMA receivers when the number of codes is reduced from 15 to either 10 or 5 (with the associated symbol-rate reductions this is no longer a like-for-like comparison).

OFDM Complexity Estimate

Figure 1 below shows the OFDM receiver processing.

[image: image12.wmf]end

:

1

for

1

)

(

1

1

)

1

(

)

1

(

ii

J

i

j

k

j

ij

i

j

k

j

ij

i

k

i

r

w

r

w

r

h

w

J

i

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

=

å

å

+

=

-

=

+

+

[image: image13.wmf]h

w

R

u

=

There are two essential steps in the OFDM receiver. The first is a FFT to take the time-domain signal into the frequency domain. The second step is channel equalization on each of the sub-carriers.

2.1 FFT

OFDM parameter set 1 has a 512 point FFT, while parameter set 2 uses a 1024 point FFT. Each of these will be considered in turn.

2.1.1 Parameter Set 1 FFT

The most straightforward implementation for the 512 point FFT is with a radix-2 FFT. Each butterfly in a radix-2 FFT requires 4 real multiplies, 6 real additions, and 1 table look-up (with a complex value returned per table look-up). This count does not take into account the fact that some of the twiddle factors lead to trivial multiplications (i.e. multiply by +1, or –j). There are a total of (NFFT / 2) log2NFFT butterflies, which for a 512 point FFT equals 2304 butterflies. The FFTs are performed at the OFDM symbol rate, 1/Ts.

There are other slightly more efficient FFT implementations possible. These alternatives do not make a large difference to the complexity estimates. To illustrate, one such alternative for a 512 point FFT is a mixed-radix FFT with a combination of radix-2 and radix-4 FFT butterflies. Each radix-2 butterfly requires 4 real multiplies, 6 real additions, and 1 table look-up, and there are (NFFT / 2) such radix-2 butterflies. Each radix-4 butterfly requires 12 real multiplies, 22 real additions, and 3 table look-ups, and there are a total of (NFFT / 4) log4(NFFT / 2) radix-4 butterflies. Once again, the FFTs are performed at the OFDM symbol rate, 1/Ts.

2.1.2 Parameter Set 2 FFT

For the 1024 point FFT required for parameter set 2, a radix-4 FFT can be used. Each butterfly in a radix-4 FFT requires 12 real multiplies, 22 real additions, and 3 table look-ups (with a complex value returned per table look-up). This count does not take into account the fact that some of the twiddle factors lead to trivial multiplications (i.e. multiply by +1, or –j). There are a total of (NFFT / 4) log4NFFT butterflies, which for a 1024 point FFT equals 1280 butterflies. The FFTs are performed at the OFDM symbol rate, 1/Ts.

2.2 Channel Equalization

For channel equalization each of the useful data sub-carriers is multiplied by the conjugate of the complex channel gain corresponding to that carrier. There are therefore 4 x Nu x (1/Ts) real multiplies per second and 2 x Nu x (1/Ts) real additions per second. This formula applies to both parameter sets.

2.3 Summary of OFDM Algorithmic Complexity

In this section the specific values for the two OFDM parameter sets are considered and the total corresponding complexity computed. Table 2 and Table 3 below give the relevant parameters for OFDM parameter set 1 and 2 respectively.

	Parameter
	Value
	Units

	NFFT, size of FFT
	512
	sub-carriers

	Nu, number of useful sub-carriers
	299
	sub-carriers

	(1/Ts), rate of OFDM symbols
	13500
	OFDM sym/sec

Table 2: Parameters for OFDM Complexity Estimate – Parameter Set 1

	Parameter
	Value
	Units

	NFFT, size of FFT
	1024
	sub-carriers

	Nu, number of useful sub-carriers
	705
	sub-carriers

	(1/Ts), rate of OFDM symbols
	6000
	OFDM sym/sec

Table 3: Parameters for OFDM Complexity Estimate – Parameter Set 2

With the defined parameters, the total cost for parameter set 1, using the all-radix-2 approach, is 1600.3 million addition equivalents per second. The alternative implementation for parameter set 1 using a mix of radix-2 and radix-4 butterflies yields a total cost of 1310.0 million addition equivalents per second. The total cost for the OFDM parameter set 2 all-radix-4 solution is 1268.3 million addition equivalents per second. Both parameter sets yield a similar total cost – the cost of the parameter set 2 solution will be the one presented in the comparison with the W-CDMA receivers.

3 RAKE Complexity Estimate

3.1 Introduction

The complexity of a RAKE receiver will be computed as a comparison point for the other receivers. The RAKE receiver structure is shown in Figure 2 below. Here, the despreading of a single code is shown. It should be understood that this despreading must be performed for each of the multiple spreading codes used. The complexity is broken down into the following three parts, each of which will be evaluated in turn: (1) RRC filtering, (2) finger despreading, and (3) combining.

[image: image14.wmf]).

(

)

(

1

0

0

j

L

j

p

j

d

R

g

E

d

h

t

-

=

å

-

=

l

l

[image: image15.wmf].

)

(

0

0

n

MCI

ISI

R

R

R

R

o

TOT

u

N

E

E

E

+

-

+

=

3.2 RRC Filtering

The RRC filtering is a fixed-coefficient filter operating on the digitally sampled complex input signal. The input signal to the filter is assumed to be at 2 Fc, where Fc is the chip rate (3.84 Mcps). The output is assumed to be an over-sampled signal with Novs samples per chip. In other words, the RRC filter also acts as an interpolation filter. Since the filter coefficients are fixed an efficient multiplier-less hardware implementation is possible – we will assume that 3 additions and 3 shift operations are required for each filter tap. If the length of the filter in each of the phases of the poly-phase filter is LRRC then the total complexity of the RRC filtering is 2 (I,Q) x 2 Fc x LRRC x (Novs / 2) x 3 real additions and shifts per second.

3.3 Finger Despreading and Combining

Despreading (and descrambling) must be performed for each finger and for each code and then the maximum ratio combining weights are applied to the despread symbols. Multiple structures are possible for the despreading and combining in the multi-code scenario. The most efficient structure depends on the number of codes and number of fingers in use. Three possible structures are considered here. Each will be evaluated for the parameters given and the cost of the most efficient solution presented. The three choices are:

(1) Despread each Finger and Code Separately followed by Finger Combining

Descramble and despread in a single step on each finger and each code followed by combining (as shown in Figure 2). This tends to be the most efficient when the number of codes is small. In this case with the number of RAKE fingers denoted by J, and the number of codes by Ncodes the number of QMAC operations per second to perform the despreading is Fc x J x Ncodes.

(2) Descramble each Finger, followed by FHT on each Finger and then Finger Combining

Descrambling is first performed on each finger, followed by a Fast Hadamard Transform (FHT), and then finger combining of the symbols on the codes that are in use. The descrambling requires Fc x J QMAC operations per second. The FHT consists of (N/2) log2(N) butterflies where N is the spreading factor (32 butterflies for N=16) with 4 real additions per butterfly. The FHT is performed on each of the J fingers at the rate Fc / N. Therefore the total cost of the FHT is 4 x (N/2) x log2(N) x J x (Fc / N) real additions per second. Finally, the combining step requires (4 x J x Ncodes x Fc / N) real multiplications and additions per second.

(3) Finger Combine First followed by Descrambling and the FHT

It is possible to perform combining first, at the chip rate, followed by the descrambling and FHT. In this case, the combining requires (4 x J x Fc) real multiplications and additions per second. The descrambling is simply Fc QMAC operations per second, and the FHT requires 4 x (N/2) x log2(N) x (Fc / N) real additions per second.

These three options are considered for the RAKE, G-RAKE and the MMSE. The complexity of all three options are considered and the numbers for the least complex option are presented.

3.4 Summary of RAKE Complexity

The above sections outlined the complexity keeping everything parameterized. In this section, a typical set of parameters will be considered and the total corresponding complexity computed. Table 4 below gives the set of parameters under consideration and Table 5 summarizes the complexity for this set of parameters (a multi-code HSDPA scenario). For this set of parameters it is most efficient to combine first, followed by descrambling and FHT.

	Parameter
	Value
	Units

	J, Number of RAKE Fingers
	6
	fingers

	Novs, Oversampling Factor
	8
	samples/chip

	N, Spreading Factor
	16
	chips

	LRRC, Length of each Phase of RRC Filter
	4
	taps

	Ncodes, Number of HSDPA Codes
	15
	codes

Table 4: Parameters for RAKE Complexity Evaluation
	RAKE Function
	Cost (million per second)

	1. RRC Filtering
	 737.3

	2. Combining
	1013.8

	3. Descrambling
	 7.7

	4. FHT
	 30.7

	Total
	1789.4

Table 5: RAKE Complexity Summary – HSDPA Multi-code Despreading

For context, Table 6 summarizes the complexity of RAKE functionality for the situation where only a single Release ’99 DPDCH channel with spreading factor 128 is despread. When compared to Table 5 these numbers emphasize the additional complexity required for the multi-code despreading and the combining at the lower spreading factor required by HSDPA.

	RAKE Function
	Cost (million per second)

	1. RRC Filtering
	737.3

	2. RAKE Despreading
	 46.1

	3. RAKE Finger Combining
	 7.9

	Total
	791.3

Table 6: RAKE Complexity Summary – Despreading a Single SF=128 DPDCH Channel

4 G-RAKE Complexity Estimate

4.1 Introduction

This section of the document analyzes the complexity of a G-RAKE receiver (reference [2]) at the UE in an HSDPA multi-code scenario. Figure 3 shows the parts of the receiver for which the complexity will be estimated. As described in the RAKE section, three options for the descrambling/despreading/combining are considered and the most efficient one selected for cost presentation. The following functions will not be counted in the estimate: (a) delay estimation (searching and finger tracking), (b) channel estimation, (c) G-RAKE finger assignment, (d) code generation, and (e) any symbol-rate functionality beyond the combining. The complexity is broken down into the following parts, each of which will be evaluated in turn: (1) RRC filtering, (2) G-RAKE weight calculation, and (3) descrambling/despreading/combining.

[image: image16.wmf]).

(

)

,

(

2

1

2

1

d

d

R

d

d

R

p

n

-

=

[image: image17.wmf]å

å

-

=

-

=

ú

û

ù

ê

ë

é

-

-

-

=

1

0

1

0

2

*

1

2

1

*

2

1

.

)

(

)

(

1

)

,

(

)

,

(

L

L

q

q

p

p

q

MCI

d

R

d

R

N

n

n

R

g

g

d

d

R

l

l

l

t

t

4.2 RRC Filtering

The RRC filtering is the same as that for the RAKE. The total complexity of the RRC filtering is 2 (I,Q) x 2 Fc x LRRC x (Novs / 2) x 3 real additions and shifts per second.

4.3 G-RAKE Weight Calculation

The G-RAKE weight calculation is itself broken into 6 steps:

(1) calculate the covariance matrix for the ISI, RISI,

(2) calculate the covariance matrix for the other-code interference, RMCI,

(3) calculate the covariance matrix for the noise, Rn,

(4) scale and sum the covariance matrices from steps (1)-(3) to get the total covariance matrix, Ru,

(5) calculate the response vector, h, and

(6) perform Gauss-Seidel iterations to calculate the weight vector, w.

Reference [3] gives many suggestions for reducing the complexity of the G-RAKE weight calculation. Most of these recommendations are followed here. The following notation will be used throughout this section:

Fc is the chip rate,

Tc is a chip duration,

L is the number of paths,

J is the number of G-RAKE fingers,

Novs is the oversampling rate (samples per chip),

N is the spreading factor (16 for HSDPA),

K is the number of Gauss-Seidel iterations used to solve for the weights,

1,…,L are the path delays,

d1,…,dJ are the G-RAKE finger delays,

g1,…,gL are the channel estimates for the paths,

Rdelay is the rate at which delays are updated (updates per second),

Rch is the rate at which channel estimates are updated (updates per second), and

(((denotes rounding towards minus infinity.

4.3.1 Calculation of the ISI Covariance Matrix, RISI
The ISI covariance matrix, RISI, is a J x J matrix, where the element at position (d1,d2) is computed with the equation (eqn (15) in reference [3])

[image: image2.wmf](

)

å

å

å

-

=

-

=

-

-

=

ú

û

ù

ê

ë

é

-

+

-

+

-

-

=

1

0

1

0

1

1

2

*

1

2

2

1

*

2

1

.

)

(

)

(

1

)

,

(

)

,

(

L

L

q

N

N

m

q

c

p

c

p

q

ISI

mT

d

R

mT

d

R

m

N

N

n

n

R

g

g

d

d

R

l

l

l

t

t

Here, Rp(t) is the autocorrelation of the chip pulse shape (see ref [2]) and R(n1,n2) is a two-dimensional look-up table where the indices into the table, n1 and n2, are derived from the finger and path delays by the expressions

[image: image18.wmf]ovs

ovs

N

N

d

d

n

ú

û

ú

ê

ë

ê

-

-

-

=

l

l

t

t

1

1

1

and

[image: image19.wmf].

1

2

2

ovs

ovs

q

N

N

d

d

n

ú

û

ú

ê

ë

ê

-

-

-

=

l

t

t

In the expression for RISI(d1,d2) above, the term in square brackets only depends on the delays of the paths and G-RAKE fingers. These terms may therefore be calculated at the rate at which the path and finger delays are updated, Rdelay. This is nominally once every frame. The effect of the channel estimates is applied at the rate of channel estimation update, Rch. This is nominally once a slot.

4.3.1.1 Calculation of the Delay-Dependent Term

The computation of the slowly changing term within square brackets consists of 2 parts: the table look-up, R(n1,n2), and the summation over m. The table look-up requires 5 additions, 2 shifts and 1 table look-up for each term. There are L2 such terms in the series summation for each element within RISI, and there are J(J+1)/2 elements within RISI to compute (reduced from J 2 by taking advantage of the Hermitian symmetry of RISI – see ref [3]).

The summation over m requires 2 multiplies, 5 additions, and 2 table look-ups for each m. Exploiting the range of non-zero values of Rp, the range of the summation may be reduced to a maximum of 2C2 terms where C2 is a constant (eg. C2 = 3). Therefore, there are 2 x [2 x C2 x L2 x J x (J+1) / 2] multiplications, 5 x […] additions, and 2 x […] table look-ups required. Note that here, we assume that Rp(t) is stored in a look-up table.

4.3.1.2 Application of the Channel Estimates to Complete the Calculation of RISI
The application of the channel estimates in the equation for RISI(d1,d2) may be interpreted in several different ways. It may be considered as a straight set of multiplications and summations as expressed in the series represented in the equation above. Alternatively, all of the J 2 L2 delay-dependent terms may be converted into a matrix of size J 2 x L2, AISI, which is then multiplied by a long column vector fISI of length L2 where the terms of fISI are the products of the channel estimates. The result of this multiplication of AISI and fISI is a J 2 long column-vector which represents the matrix RISI with the elements reordered in to one long column vector. There are L(L+1)/2 complex multiplications (4 real multiplies and 2 real additions each) required to compute the elements of fISI and L2J(J+1) real multiplications and L2J(J+1) real additions to compute the product of AISI and fISI. Note that Hermitian symmetry of RISI has been exploited to allow a near-half reduction in complexity. All of these calculations must be done at the channel estimate update rate Rch.

4.3.2 Calculation of the Multi-Code Interference Covariance Matrix, RMCI
Element (d1,d2) of the covariance matrix for the interference from other codes (i.e. the multi-code interference) is calculated with the expression [3]
[image: image20.wmf]end

:

1

for

1

)

(

1

1

)

1

(

)

1

(

ii

J

i

j

k

j

ij

i

j

k

j

ij

i

k

i

r

w

r

w

r

h

w

J

i

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

=

å

å

+

=

-

=

+

+

This expression is similar to that for the ISI, except here the term in square brackets no longer has a summation over many terms. The term in brackets is still a term that only depends on the delays, and therefore is only recalculated whenever the delay estimates change.

4.3.2.1 Calculation of the Delay-Dependent Term

The computation of the slowly changing term within square brackets consists of 2 parts: the table look-up, R(n1,n2), and a product of two chip pulse-shape autocorrelation functions. The table look-up complexity is the same as that for the ISI covariance matrix. It requires 5 additions, 2 shifts and 1 table look-up for each term. The product of the pulse-shape autocorrelation functions and the summation with the table look-up term requires 2 additions, 2 table look-ups, 1 multiply, and 1 shift for each term. There are a total of L2 terms in the series computation for each element within RMCI, and there are J(J+1)/2 such elements within RMCI to compute.

4.3.2.2 Application of the Channel Estimates to Complete the Calculation of RMCI
The application of the channel estimates is done in the same fashion as was done for RISI. The J 2 L2 delay-dependent terms are converted into a matrix of size J 2 x L2, AMCI, which is then multiplied by a long column vector fMCI of length L2 where the terms of fMCI are the products of the channel estimates. Since fMCI and fISI are the same vector, there is no need to recompute this (we just set fMCI=fISI). There are L2J(J+1) real multiplications and L2J(J+1) real additions to compute the product of AMCI and fMCI. All of these calculations are done at the channel estimate update rate, Rch.

4.3.3 Calculation of the Noise Covariance Matrix, Rn
The element (d1,d2) of the noise covariance matrix is computed by

[image: image21.wmf]).

(

)

(

1

0

0

j

L

j

p

j

d

R

g

E

d

h

t

-

=

å

-

=

l

l

This is one addition and one table look-up per term of which there are J(J+1)/2 unique terms (the others are derived by symmetry). This matrix is recomputed at the rate of delay updates, Rdelay.

4.3.4 Calculation of the Total Covariance Matrix, Ru
The covariance matrices of the ISI, multi-code interference, and noise are now scaled and summed together to form the total covariance matrix, Ru.

[image: image22.wmf]h

w

R

u

=

Each matrix is a J x J matrix. RISI and RMCI are complex, but Rn is real. Exploiting the Hermitian symmetry again, there are, 5J(J+1)/2 real multiplications, and 3J(J+1)/2 real additions required to perform the scaling and summing of these matrices. These calculations are repeated at the channel estimate update rate, Rch.

4.3.5 Calculation of the Response Vector, h
The elements of the response vector, h, are computed via the expression

[image: image23.emf]RRC

Finger J

SF

k1

Delay d

J

(Code)*

SF

k1

Delay d

1

(Code)*

y(d

J

)

*

1

w

*

J

w

Finger 1

z

r(t)

y(d

1

)

RRC

Finger J

SF

k1

Delay d

J

(Code)*

SF

k1

Delay d

1

(Code)*

y(d

J

)

*

1

w

*

J

w

Finger 1

z

r(t)

y(d

1

)

Each element of h requires 2L+2 multiplications, 3L additions, and L table look-ups. There are J elements of h for which this needs to be done and the update rate is the channel estimate update rate, Rch.

4.3.6 Calculation of the Weight Vector, w, by Gauss-Seidel Iterations

The weight vector, w, is the solution to the system of equations

[image: image24.emf]Channel

Equalization

FFT

Of course, matrix inversion is possible but other alternative methods of solution may yield less complexity. Solution via Gauss-Seidel iterations as suggested in reference [3] will be evaluated here. With the Gauss-Seidel iteration technique, the weight vector elements are given an initial set of values and then each equation within the system is solved successively, yielding a new weight vector element. Any newly computed weight vector element is used in the solution of the ensuing equations. This sequence of steps is repeated over several iterations until adequate convergence is achieved. The algorithm solving for the weight vector at iteration k+1 may be expressed [6]
[image: image25.emf]Complexity Comparison of Different Receivers

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

OFDMRAKEG-RAKEMMSE

Receiver Type

Cost

(millions per sec

ond)

Each solution of a weight vector element for an iteration requires 4(J-1) real multiplications 4(J-1)+2 real additions and 2 divisions. There are J total elements in the weight vector to be solved for and this algorithm is repeated for K iterations. All of this is performed at the channel estimate update rate, Rch.

4.4 Descrambling, Despreading, and Combining

As with the RAKE, the operations of descrambling, despreading, and combining are required. In the RAKE section three options were discussed:

(1) despread each finger and code separately followed by finger combining,

(2) descramble each finger, followed by FHT on each finger and then finger combining, and

(3) finger combine first followed by descrambling and the FHT.

All three options will be evaluated for the parameters given and the cost of the most efficient solution presented.

4.5 Summary of G-RAKE Complexity

The above sections outlined the complexity keeping everything parameterized. In this section, a typical set of parameters will be considered and the total corresponding complexity computed. Table 7 below gives the set of parameters under consideration and Table 8 summarizes the complexity (i.e. cost) for this set of parameters. Note that the channel estimate update rate corresponds to 1 channel estimate per slot and the delay update rate corresponds to 1 update per 15 slots, or every 10 ms. For this set of parameters the most efficient solution performs combining first, followed by descrambling and the FHT.

	Parameter
	Value
	Units

	L, Number of Paths
	6
	paths

	J, Number of G-RAKE Fingers
	12
	fingers

	Novs, Oversampling Factor
	8
	samples/chip

	Rdelay, Rate of delay updates
	100
	updates/sec

	Rch, Rate of channel estimate updates
	1500
	updates/sec

	N, Spreading Factor
	16
	chips

	2*C2, Sum Range ISI Covariance Matrix Term Calculation
	6
	chips

	K, Number of Gauss-Seidel Iterations
	3
	iterations

	LRRC, Length of each Phase of RRC Filter
	4
	taps

	Ncodes, Number of HSDPA Codes
	15
	codes

Table 7: Parameters for G-RAKE Complexity Estimate
	G-RAKE Function
	Cost (million per second)

	1. RRC Filtering
	 737.3

	2. G-RAKE Weight Calculation
	 274.8

	3. G-RAKE Finger Combining
	2027.5

	4. Descrambling
	 7.7

	5. FHT
	 30.7

	Total
	3078.0

Table 8: G-RAKE Complexity Summary

Note the assumption that 3 iterations are sufficient for the Gauss-Seidel algorithm to converge. When it comes to matrix inversion and iterative algorithms such as this one the convergence properties and the numerical stability of the algorithm under a wide-variety of representative conditions is an important consideration. There may be conditions under which this algorithm is numerically unstable or requires an impractically long time to converge. Other more robust algorithms may be required that potentially have much larger complexity.

A second important point about the G-RAKE is that it is quite sensitive to the quality of its channel and delay estimation. As reference [4] points out the G-RAKE performance degradation from using channel and delay estimation is much larger than that of a RAKE.

5 MMSE Equalizer Complexity Estimate

5.1 Introduction

[image: image26.emf]Pilot Channel Processing

Path Delays:

1

,...,

J

)(ky

p

Channel Estimates: g

1

,...,g

J

MMSE Equalizer

Delay and

Channel

Estimation

Calculate MMSE

Equalizer Weight

Coefficients

PEd

ww,,

1

w

RRC

SF

k1

(Code)*

[image: image27.emf]RRC

Finger J

SF

k1

Delay d

J

(Code)*

SF

k1

Delay d

1

(Code)*

y(d

J

)

*

1

w

*

J

w

Path Delays:

1

,...,

L

Finger 1

J

ww,,

1

Channel Estimates: g

1

,...,g

L

Finger Delays:d

1

,...,d

J

z

Calculate G-RAKE

Finger Weights

r(t)

y(d

1

)

This section of the document analyzes the complexity of a Minimum Mean-Squared Error (MMSE) equalizer. The analysis will follow the notation of [5] with simplifications to a single Tx and single Rx antenna. Figure 4 below shows how the parts of the receiver are interconnected when a MMSE equalizer is used.

The receiver is composed of the following parts: (a) pilot channel processing, (b) MMSE equalizer weight calculation, (c) MMSE equalizer, and (d) despreading of the multi-code data channels. The pilot channel processing involves RRC filtering the received signal, and then delay and channel estimation. Note that the complexity analysis here does not count the delay and channel estimation block as this is counted as a common operation among the different types of receivers. The channel and delay estimates are passed to a block which calculates the MMSE equalizer tap coefficients. These weights are passed to the equalizer where the filtering is applied to the received signal. The output of the equalizer is then despread with each of the codes.

Here we are assuming that the MMSE coefficients are computed as the Wiener solution as described in [5] with the channel matrix reconstructed from the estimated path delay locations and channel estimates. The expression for the weight vector, wd, is [5]

[image: image3.wmf].

2

2

ú

û

ù

ê

ë

é

+

=

PE

x

n

H

H

d

d

I

ΓΓ

Γ

e

w

s

s

Here, is the channel matrix (defined later), ed is a unit vector specifying the delay d, nis the noise variance, xis the chip power (of the transmitted signal), and IPE is the (P x E) x (P x E) identity matrix. E is the equalizer length in chips, and P is the oversampling factor. The equalizer length, E, is generally on the order of the length of the delay spread, or longer. Following the notation of [5], the delay spread will be denoted by L in this section. The oversampling factor, P, when larger than 1, corresponds to a fractionally-spaced equalizer. P will generally be set to 2. The equalizer filter is an FIR filter with P x E taps.

The matrix inversion is assumed to be performed using a Cholesky decomposition. With this implementation the weights are recomputed every time the channel estimates are recomputed. Of course, other MMSE equalizer implementations are possible. Other solutions based on gradients will offer simpler weight calculations but suffer from poorer performance.

The following notation will be used throughout this section:

Fc is the chip rate,

L is the delay spread in chips,

J is the number of paths,

Novs is the oversampling rate for the pilot channel processing (in samples/chip),

P is the oversampling factor for the equalizing filter,

E is the length of the equalizer in chips,

N is the spreading factor of the data (16 for HSDPA),

Ncodes is the number of codes,

1,…,J are the path delays,

g1,…,gL are the channel estimates for the paths,

LRRC is the length of each phase of RRC Filter,

Lpulse is the length of the pulse shape used for generating the channel matrix (in chips), and

Rch is the rate at which channel estimates are updated (updates per second).

5.2 Weight Vector Computation

5.2.1 Construction of the Channel Matrix

The channel matrix, denoted by , consists of shifted versions of the convolution of the pulse shape and the channel impulse response. The matrix is structured in the following way:

[image: image4.wmf]ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

-

=

)

0

(

)

1

(

)

0

(

)

1

(

)

0

(

)

1

(

)

0

(

)

1

(

1

1

1

1

P

P

P

P

h

L

h

h

L

h

h

L

h

h

L

h

L

M

M

L

O

L

M

M

L

Γ

where, hp(
[image: image5.wmf]l

-1) is the channel coefficient corresponding to the
[image: image6.wmf]l

th chip and pth oversample (
[image: image7.wmf]l

 = 1,…,L, and p = 1,…,P). The matrix is of size (P x E) x (E + L -1). Each row of requires a chip-spaced channel impulse response, with P unique channel impulses required. We assume that an oversampled (to a rate higher than P) copy of the pulse shape is stored in memory. The appropriate chip-spaced samples of the pulse shape are read in for each path, scaled by the channel coefficient for the path, delayed by the appropriate amount for the path, and summed with the other samples within the channel impulse response. This step requires 4 x J x P x Lpulse real multiplies and additions per channel matrix update and this must be recomputed Rch times per second. We assume that any other operations such as the initialization of the matrix with all 0’s are negligible.

5.2.2 Correlation Matrix Computation

With the channel matrix computed, the correlation matrix may be computed with the expression

[image: image8.wmf].

2

2

ú

û

ù

ê

ë

é

+

PE

x

n

H

I

ΓΓ

s

s

Here, nis the noise variance, xis the chip power (of the transmitted signal), and IPE is the (P x E) x (P x E) identity matrix. We assume that the noise variance and chip power have already been estimated. The product of the channel matrices requires 2 x (E + L – 1) x (P x E) x (P x E + 1) real multiplies and additions. This assumes that Hermitian symmetry is exploited. Addition of the second term in the correlation matrix requires 2 x P x E real additions. The resulting correlation matrix is of dimension (P x E) x (P x E). This correlation matrix must be recomputed whenever the channel estimates change, or Rch times per second.

5.2.3 Cholesky Decomposition to Determine the Weight Vector

The Cholesky decomposition factors a matrix A into the product of the two matrices L and LH where L is a lower triangular matrix [6]. The lower triangular form of L then allows for solution of the system of equations using a backward and forward substitution. The correlation matrix to be decomposed is of dimension (P x E) x (P x E). Computations of the diagonal terms in the Cholesky decomposition requires 2 x (P x E) x (P x E – 1) real multiplications and additions as well as P x E square roots. The non-diagonal terms in the Cholesky decomposition require
[image: image9.wmf]å

-

=

-

-

´

2

1

)

1

(

4

PE

k

k

PE

k

 real multiplications and additions and (P x E – 1) x (P x E) divisions. The backward and forward substitution steps require a cumulative 4 x P x E divisions and 4 x (P x E – 1) x (P x E) real multiplications and additions. The Cholesky decomposition is performed at the channel update rate, Rch.

5.3 MMSE Equalizing Filter

The MMSE filter is an FIR filter with P x E complex taps. The filter therefore requires 4 x Fc x P x E real multiplications and additions per second.

5.4 Despreading

The despreading/descrambling is as with the RAKE or G-RAKE but here only a single delay is despread. The three options for the RAKE and G-RAKE are all considered here but since after the MMSE there is only one finger, there is no combining step to perform. The real question therefore, is whether or not to use descrambling followed by the FHT, or to descramble/despread each code separately. Both are evaluated and the most efficient option presented.
5.5 Pilot Channel Processing

The pilot channel processing included here is the RRC filtering with the filter being the same as that used for the RAKE. That is 2 (I,Q) x 2 Fc x LRRC x (Novs / 2) x 3 real additions and shifts.

5.6 Summary of MMSE Equalizer Complexity

In this section a typical set of parameters will be considered and the total corresponding complexity computed. Table 9 below gives the set of parameters under consideration and Table 10 summarizes the complexity (i.e. cost) for this set of parameters. Note that the channel estimate update rate corresponds to 1 channel estimate per slot. Note that the table presents the most efficient solution using a FHT for the despreading.

	Parameter
	Value
	Units

	L, Delay Spread
	16
	chips

	E, Equalizer Length
	16
	chips

	J, Number of Paths
	6
	paths

	Novs, Oversampling Factor for Pilot Channel Processing
	8
	samples/chip

	P, Oversampling Factor for MMSE Filter
	2
	samples/chip

	Rch, Rate of channel estimate updates
	1500
	updates/sec

	N, Spreading Factor
	16
	chips

	Lpulse, Length of each Pulse Shape for Channel Generation
	8
	chips

	LRRC, Length of each Phase of RRC Filter
	4
	taps

	Ncodes, Number of HSDPA Codes
	15
	codes

Table 9: Parameters for MMSE Complexity Estimate
	MMSE Function
	Cost (million per second)

	1. Weight Vector Computation
	1581.9

	2. MMSE Equalizing Filter
	5406.7

	3. Descrambling Data
	 7.7

	4. Despreading Data (FHT)
	 30.7

	5. Pilot Channel Processing
	 737.3

	Total
	7764.3

Table 10: MMSE Complexity Summary

One important point to make about the MMSE is that the pilot channel itself isn’t equalized and so delay and channel estimation and consequently MMSE equalizer performance will suffer.

6 Conclusions and Discussion

Table 11 and the bar graph in Figure 5 compare the complexities of the different receivers.

	Receiver
	Cost (million per second)

	RAKE for R’99 DCH
	 791.3

	OFDM HSDPA
	1268.3

	RAKE for HSDPA (15 codes)
	1789.4

	G-RAKE for HSDPA (15 codes)
	3078.0

	MMSE for HSDPA (15 codes)
	7764.3

Table 11: Cost Comparison of Different Receivers
[image: image10.emf]Receiver Complexity Comparison

0

1000

2000

3000

4000

5000

6000

7000

8000

RAKE for

R'99 DCH

OFDM

HSDPA

RAKE for

HSDPA (15

codes)

G-RAKE for

HSDPA (15

codes)

MMSE for

HSDPA (15

codes)

Receiver Type

Cost

(millions per sec

ond)

Figure 5: Complexity Comparison of Receivers
What Figure 5 shows is that the RAKE, G-RAKE, and MMSE receivers are respectively 1.4, 2.4, and 6.1 times more complex than OFDM. To put this further into context, a RAKE that is processing a single Release ’99 data channel with SF=128 has a cost of 791.3 million addition equivalents per second. OFDM, despite the fact its symbol rate is more than 100 times larger, is only 1.6 times more complex than this single channel Release ’99 RAKE receiver.

6.1 Complexity of W-CDMA Receivers with Fewer Codes

This section provides additional complexity analysis of W-CDMA receivers when fewer than 15 codes are in use. The reader should be cautious when comparing these complexity estimates to the above-presented results, as the symbol rates are no longer equal, and so the comparison is not on a like-for-like basis. Table 12 and Table 13 show the total cost for the RAKE, G-RAKE, and MMSE receivers when, respectively, 10 and 5 codes are in use (all other parameters left the same). These receivers support a symbol rate that is respectively 1/3 and 2/3 less than the 15 code receiver. Note that for the RAKE and G-RAKE receivers for both the 5 and 10 code cases it is most efficient to do descrambling and the FHT on each finger followed by combining of the fingers. For the MMSE the FHT is the most efficient despreading alternative for both the 5 and 10 code cases.

	Receiver
	Cost (million per second)

	RAKE for HSDPA (10 codes)
	1601.3

	G-RAKE for HSDPA (10 codes)
	2740.1

	MMSE for HSDPA (10 codes)
	7764.3

Table 12: Cost of W-CDMA Receivers that Support 10 Codes
	Receiver
	Cost (million per second)

	RAKE for HSDPA (5 codes)
	1284.5

	G-RAKE for HSDPA (5 codes)
	2106.5

	MMSE for HSDPA (5 codes)
	7764.3

Table 13: Cost of W-CDMA Receivers that Support 5 Codes
Comparing these results from the previous section, the complexity of a low-end 5-code RAKE receiver is approximately equal to that of an OFDM receiver that supports a data rate that is 3 times higher. A low-end G-RAKE receiver is 1.7 times more complex than an OFDM receiver that supports a data rate that is 3 times higher. Note that since a FHT is used for despreading in the MMSE (as the most efficient solution), there is no reduction in complexity at all for an MMSE as the number of codes is reduced to 10 or 5 from 15.

7 References

[1] 3GPP TR 25.892 v0.2.0 Feasibility Study for OFDM for UTRAN enhancement.

[2] G.E. Bottomley, T. Ottosson, Y.-P.E. Wang, “A generalized RAKE receiver for interference suppression”, IEEE Journal on Selected Areas in Communications, vol. 18, no. 8, Aug. 2000.

[3] G. Kutz, A. Chass, “Low Complexity Implementation of a Downlink CDMA Generalized RAKE Receiver”, Proc. IEEE Vehicular Technology Conference, Sept. 2002.

[4] G. Kutz, A. Chass, “On the Performance of a Practical Downlink CDMA Generalized RAKE Receiver”, Proc. IEEE Vehicular Technology Conference, Sept. 2002.

[5] Lucent Technologies. Equalization for Frequency Selective Channels. TSG_R WG1 document TSGR1#24(02)0327; Feb 18-22, Orlando, USA.

[6] G. Golub and C. Van Loan, Matrix Computations, The John Hopkins University Press, 3rd edition, 1996.

[7] J. Proakis and D. Manolakis, Digital Signal Processing, Prentice Hall Inc., 3rd edition, 1996.

8 Text Proposal

Below is a text proposal for section 6.8 of TR25.892: Analysis of User Equipment Complexity.

--- start of text proposal

6.8
Analysis of User Equipment Complexity

6.8.2
Algorithmic Complexity of OFDM

This section presents analysis on the algorithmic complexity of OFDM. A later subsection will compare the OFDM algorithmic complexity to that of two advanced W-CDMA receivers, the G-RAKE and the MMSE equalizer. The analysis will only cover those aspects of the receiver that are not common with the other receiver types. In other words, the analysis will not include any symbol-rate functionality beyond the combining. Also excluded from the estimates are: (a) delay estimation (searching and finger tracking), (b) channel estimation, (c) finger assignment, and (d) code generation. These functions are not a dominant part of the complexity and, in the case of delay and channel estimation, they are similar in nature and should have comparable relative complexities in each of the receivers. The complexity of the receiver is dominated by the functionality covered within this document – the despreading, equalization, filtering, FFT, etc. Note it is assumed that all receivers are using the same RF front-end and CCTrCH processing back-end, including OFDM.

Figure 6 below shows the OFDM receiver processing. There are two essential steps in the OFDM receiver. The first is a FFT to take the time-domain signal into the frequency domain. The second step is channel equalization on each of the sub-carriers. Each of these elements will be considered in turn.

[image: image28.wmf].

1

2

2

ovs

ovs

q

N

N

d

d

n

ú

û

ú

ê

ë

ê

-

-

-

=

l

t

t

[image: image29.wmf]ovs

ovs

N

N

d

d

n

ú

û

ú

ê

ë

ê

-

-

-

=

l

l

t

t

1

1

1

Each operation (real addition, real multiplication, etc.) will be assigned a relative cost and the total complexity will be quoted based on this cost. Table 14 shows the relative cost assigned to each type of operation. Note that the cost of a real addition is set to 1 and all other operation costs are with respect to this baseline value. The table refers to a QMAC operation. A QMAC (short for QPSK Multiply and Accumulate) is the multiplication of a complex data sample with a complex code value (±1±j) and the accumulation of the complex result.
	Operation
	Relative Cost

	Addition
	1

	Multiply
	10

	Division
	40

	Square Root
	50

	QMAC
	2

Table 14: Cost per Operation Type

6.8.2.1
FFT

OFDM parameter set 1 has a 512 point FFT, while parameter set 2 uses a 1024 point FFT. Each of these will be considered in turn.

The most straightforward implementation for the 512 point FFT is with a radix-2 FFT. Each butterfly in a radix-2 FFT requires 4 real multiplies, 6 real additions, and 1 table look-up (with a complex value returned per table look-up). This count does not take into account the fact that some of the twiddle factors lead to trivial multiplications (i.e. multiply by +1, or –j). There are a total of (NFFT / 2) log2NFFT butterflies, which for a 512 point FFT equals 2304 butterflies. The FFTs are performed at the OFDM symbol rate, 1/Ts.

There are other slightly more efficient FFT implementations possible. To illustrate, one such for a 512 point FFT is a mixed-radix FFT with a combination of radix-2 and radix-4 FFT butterflies. Each radix-2 butterfly requires 4 real multiplies, 6 real additions, and 1 table look-up, and there are (NFFT / 2) such radix-2 butterflies. Each radix-4 butterfly requires 12 real multiplies, 22 real additions, and 3 table look-ups, and there are a total of (NFFT / 4) log4(NFFT / 2) radix-4 butterflies. Once again, the FFTs are performed at the OFDM symbol rate, 1/Ts.

For the 1024 point FFT required for parameter set 2, a radix-4 FFT can be used. Each butterfly in a radix-4 FFT requires 12 real multiplies, 22 real additions, and 3 table look-ups (with a complex value returned per table look-up). This count does not take into account the fact that some of the twiddle factors lead to trivial multiplications (i.e. multiply by +1, or –j). There are a total of (NFFT / 4) log4NFFT butterflies, which for a 1024 point FFT equals 1280 butterflies. The FFTs are performed at the OFDM symbol rate, 1/Ts.

6.8.2.2
Channel Equalization

For channel equalization each of the useful data sub-carriers is multiplied by the conjugate of the complex channel gain corresponding to that carrier. There are therefore 4 x Nu x (1/Ts) real multiplies per second and 2 x Nu x (1/Ts) real additions per second. This formula applies to both parameter sets.

6.8.2.3
Summary of OFDM Algorithmic Complexity
In this section the specific values for the two OFDM parameter sets are considered and the total corresponding complexity computed. Table 15 and Table 16 below give the relevant parameters for OFDM parameter set 1 and 2 respectively.

	Parameter
	Value
	Units

	NFFT, size of FFT
	512
	sub-carriers

	Nu, number of useful sub-carriers
	299
	sub-carriers

	(1/Ts), rate of OFDM symbols
	13500
	OFDM sym/sec

Table 15: Parameters for OFDM Complexity Estimate – Parameter Set 1

	Parameter
	Value
	Units

	NFFT, size of FFT
	1024
	sub-carriers

	Nu, number of useful sub-carriers
	705
	sub-carriers

	(1/Ts), rate of OFDM symbols
	6000
	OFDM sym/sec

Table 16: Parameters for OFDM Complexity Estimate – Parameter Set 2

With the defined parameters, the total cost for parameter set 1, using the all-radix-2 approach, is 1600.3 million addition equivalents per second. The alternative implementation for parameter set 1 using a mix of radix-2 and radix-4 butterflies yields a total cost of 1310.0 million addition equivalents per second. The total cost for the OFDM parameter set 2 all-radix-4 solution is 1268.3 million addition equivalents per second. Both parameter sets yield a similar total cost.

6.8.2.4
Algorithmic Complexity Comparison with WCDMA Receivers
Reference [R1-031085] compared the complexity of OFDM as assessed above with that of two advanced WCDMA receivers, the G-RAKE and the MMSE equalizer. The complexity of a RAKE receiver was also presented in order to put the numbers into context. This section will only summarize the results of the complete analysis performed in [R1-031085]. Since the cost of the two different OFDM parameter sets is similar, for the comparison presented here, only the cost of parameter set 2 will be used.

The parameters for each receiver were set such that the receivers yield a similar symbol rate (15 codes in HSDPA gives a symbol rate of 3.6 Msym/sec, while 705 useful data subcarriers for OFDM parameter set 2 gives a symbol rate of about 3.8 Msym/sec, assuming 10% signalling/pilot overhead). Table 17 and Figure 7 below summarize the relative cost of the different receivers. Recall that the costs compared here are the dominant components in the front end of the receiver and exclude decoding of the CCTrCH and other components that the receivers have in common. The RAKE, G-RAKE, and MMSE are respectively 1.4, 2.4, and 6.1 times more complex than an OFDM receiver with parameter set 2. In fact, the complexity of the OFDM receiver is only 1.6 times larger than that of a RAKE receiver for a single SF=128 Release ’99 channel, despite the fact its symbol rate is more than 100 times larger.

	Receiver
	Cost (million per second)

	RAKE for R’99 DCH
	 791.3

	OFDM HSDPA (parameter set 2)
	1268.3

	RAKE for HSDPA (15 codes)
	1789.4

	G-RAKE for HSDPA (15 codes)
	3078.0

	MMSE for HSDPA (15 codes)
	7764.3

Table 17: Cost Comparison of Different Receivers
[image: image11.emf]Receiver Complexity Comparison

0

1000

2000

3000

4000

5000

6000

7000

8000

RAKE for

R'99 DCH

OFDM

HSDPA

RAKE for

HSDPA (15

codes)

G-RAKE for

HSDPA (15

codes)

MMSE for

HSDPA (15

codes)

Receiver Type

Cost

(millions per sec

ond)

Figure 7: Receiver Complexity Comparison
As additional information, Table 18 and Table 19 show the total cost for the RAKE, G-RAKE, and MMSE receivers when, respectively, 10 and 5 codes are in use (all other parameters left the same). These receivers support a symbol rate that is respectively 1/3 and 2/3 less than the 15 code receiver. As these numbers are for a receiver with a different symbol rate the reader should be cautious when comparing these complexity estimates to the above-presented results, as the comparison is no longer on a like-for-like basis.

	Receiver
	Cost (million per second)

	RAKE for HSDPA (10 codes)
	1601.3

	G-RAKE for HSDPA (10 codes)
	2740.1

	MMSE for HSDPA (10 codes)
	7764.3

Table 18: Cost of W-CDMA Receivers that Support 10 Codes
	Receiver
	Cost (million per second)

	RAKE for HSDPA (15 codes)
	1284.5

	G-RAKE for HSDPA (15 codes)
	2106.5

	MMSE for HSDPA (15 codes)
	7764.3

Table 19: Cost of W-CDMA Receivers that Support 5 Codes
Looking at these tables, the complexity of a low-end 5-code RAKE receiver is approximately equal to that of an OFDM receiver that supports a data rate that is 3 times higher. A low-end G-RAKE receiver is 1.7 times more complex than an OFDM receiver that supports a data rate that is 3 times higher. Note that since a Fast Hadamard Transform (FHT) is used for despreading in the MMSE, there is no reduction at all in the cost of a MMSE receiver as the number of codes is reduced to 10, or 5, from 15.

--- end of text proposal

Figure � SEQ Figure * ARABIC �1�: OFDM Receiver Architecture

Figure � SEQ Figure * ARABIC �6�: OFDM Receiver Architecture

Figure � SEQ Figure * ARABIC �4�: MMSE Receiver Structure

Figure � SEQ Figure * ARABIC �2�: RAKE Architecture

Figure � SEQ Figure * ARABIC �3�: G-RAKE Receiver

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

3GPP TSG-RAN-1 Meeting #34

Seoul, Korea, 2003

Page 1

[image: image30.wmf]å

å

-

=

-

=

ú

û

ù

ê

ë

é

-

-

-

=

1

0

1

0

2

*

1

2

1

*

2

1

.

)

(

)

(

1

)

,

(

)

,

(

L

L

q

q

p

p

q

MCI

d

R

d

R

N

n

n

R

g

g

d

d

R

l

l

l

t

t

[image: image31.wmf]).

(

)

,

(

2

1

2

1

d

d

R

d

d

R

p

n

-

=

[image: image32.wmf].

)

(

0

0

n

MCI

ISI

R

R

R

R

o

TOT

u

N

E

E

E

+

-

+

=

_1113722134.unknown

_1113722684.unknown

_1113726009.unknown

_1113741317.unknown

_1113723658.unknown

_1113722674.unknown

_1111992438.unknown

_1111996406.unknown

_1111998441.unknown

_1111995845.unknown

_1111989307.unknown

_1111991989.unknown

_1111927117.unknown

_1111927130.unknown

_1111926539.unknown

