Page 1

3GPP TSG-RAN WG5 Testing
R5s160398
01 Jan – 31 Dec 2016
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	36.523-3
	CR
	3272
	rev
	-
	Current version:
	12.5.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	 Correction to test case 7.1.4.12

	
	

	Source to WG:
	Anritsu Ltd.

	Source to TSG:
	R5

	
	

	Work item code:
	TEI8_Test
	
	Date:
	2016-05-05

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-12

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)

	
	

Goal of the altstep in step4 in function f_TC_7_1_4_12_EUTRA is to receive and swallow any Scheduling Requests until PDCP discard timer (=50ms) expires. Current code uses function to calculate minimum tolerance of this timer which is causing two problems:

	1) This timer is so small that it it is comparable with RTT (40ms in FDD and 55ms in TDD) so the resulting tolerance especially in TDD becomes larger than the timer itself thus causing the minimum tolerance being 0.

2) The concept of minimum tolerance should not be applied in this step, provided that goal of this altstep is indeed to swallow all SRs until discard timer expiry. If used, only two SRs (first being the one from step 3) are received, then SR indications get disabled and while code goes to step 5 the UE is still transmitting SRs.

To avoid both these problems we suggest not to apply any tolerance in this case (Maximum tolerance would also lead to problems) and keep value of the timer as is, i.e. 50ms. In both FDD and TDD the periodicity of SRs in this test is same (=20ms) which will lead to exactly 4 SRs (including the first one from step 3) and only then the SR indications get disabled and also UE should not be transmitting any anymore.

Without this change, an incoming SR may collide with process of disabling the SR indication and lead to test failure of conformant UE. Also should this altstep meant any protection against UEs transmitting too few SRs, the protection is not working with the way how minimal tolerance is calculated for very small timers. Protection against UEs transmitting too many SRs was neither in old code nor it will be in the proposed change (test prose doesn’t require such protection).

	

	
	

	Summary of change:
	In altstep of step4 the timer value calculated as minimum tolerance was replaced by the value of timer itself.

	
	

	Consequences if not approved:
	Incoming SR may collide with process of disabling the SR indication and lead to test failure of conformant UE

	
	

	Clauses affected:
	7.1.4.12

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

Change 1
	Function name
	f_TC_7_1_4_12_EUTRA

Goal of the altstep in step4 in function f_TC_7_1_4_12_EUTRA is to receive and swallow any Scheduling Requests until PDCP discard timer (=50ms) expires. Current code uses function to calculate minimum tolerance of this timer which is causing two problems:

	1) This timer is so small that it is comparable with RTT (40ms in FDD and 55ms in TDD) so the resulting tolerance especially in TDD becomes larger than the timer itself thus causing the minimum tolerance being 0.

2) The concept of minimum tolerance should not be applied in this step, provided that goal of this altstep is indeed to swallow all SRs until discard timer expiry. If used, only two SRs (first being the one from step 3) are received, then SR indications get disabled and while code goes to step 5 the UE is still transmitting SRs.

To avoid both these problems we suggest not to apply any tolerance in this case (Maximum tolerance would also lead to problems) and keep value of the timer as is, i.e. 50ms. In both FDD and TDD the periodicity of SRs in this test is same (=20ms) which will lead to exactly 4 SRs (including the first one from step 3) and only then the SR indications get disabled and also UE should not be transmitting any anymore.

Without this change, an incoming SR may collide with process of disabling the SR indication and lead to test failure of conformant UE. Also should this altstep meant any protection against UEs transmitting too few SRs, the protection is not working with the way how minimal tolerance is calculated for very small timers. Protection against UEs transmitting too many SRs was neither in old code nor it will be in the proposed change (test prose doesn’t require such protection).

	

	Summary of change
	In altstep of step4 the timer value calculated as minimum tolerance was replaced by the value of timer itself.

	TTCN module
	LTE\7_1\MAC_714.ttcn

	MCC160 Comment
	

Before change

 function f_TC_7_1_4_12_EUTRA() runs on EUTRA_PTC

 {
…

 //@siclog "Step 3" siclog@

 t_Watchdog.start;

 SYSIND.receive(car_SchedulingReq_IND (eutra_Cell1, ?)) -> value v_ReceivedSYSIND;

 v_Timing1 := v_ReceivedSYSIND.Common.TimingInfo.SubFrame;

 //@siclog "Step 4" siclog@

 alt {

 []SYSIND.receive(car_SchedulingReq_IND (eutra_Cell1, ?)) -> value v_ReceivedSYSIND

 {

 //Check if the received SR is within a window of 100 ms

 v_Timing2 := v_ReceivedSYSIND.Common.TimingInfo.SubFrame;

 v_SchedulingRequestWindowSize := f_EUTRA_SetTimerToleranceMin(eutra_Cell1, l2Timer, 0.05); //50 ms to wait for SR Discard timer
 if (f_EUTRA_SubFrameTimingDuration_Float(v_Timing1, v_Timing2) < v_SchedulingRequestWindowSize) {

 repeat;

 }

 f_SS_ConfigSchedulingRequestIndMode (eutra_Cell1, tsc_L1Mac_IndicationMode_Disable);

 t_Watchdog.stop;

 }

 }

 //@siclog "Step 5" siclog@
After change

 function f_TC_7_1_4_12_EUTRA() runs on EUTRA_PTC

 {
…

 //@siclog "Step 3" siclog@

 t_Watchdog.start;

 SYSIND.receive(car_SchedulingReq_IND (eutra_Cell1, ?)) -> value v_ReceivedSYSIND;

 v_Timing1 := v_ReceivedSYSIND.Common.TimingInfo.SubFrame;

 //@siclog "Step 4" siclog@

 alt {

 []SYSIND.receive(car_SchedulingReq_IND (eutra_Cell1, ?)) -> value v_ReceivedSYSIND

 {

 //Check if the received SR is within a window of 100 ms

 v_Timing2 := v_ReceivedSYSIND.Common.TimingInfo.SubFrame;

 v_SchedulingRequestWindowSize := 0.05;

 if (f_EUTRA_SubFrameTimingDuration_Float(v_Timing1, v_Timing2) < v_SchedulingRequestWindowSize) {

 repeat;

 }

 f_SS_ConfigSchedulingRequestIndMode (eutra_Cell1, tsc_L1Mac_IndicationMode_Disable);

 t_Watchdog.stop;

 }

 }

 //@siclog "Step 5" siclog@
